📄 pso.m
字号:
function [OUT,varargout]=PSO(structure)
D=3;
rand('state',sum(100*clock));
if nargin < 1
error('Not enough arguments.');
end
% PSO PARAMETERS
VRmin=ones(D,1)*-20;
VRmax=ones(D,1)*20;
VR=[VRmin,VRmax];
minmax = 1;
P =[1 2000 20 4 2 2 0.9 0.2 1500 2 1e-5 20 1];
df = P(1);
me = P(2);
ps = P(3);
mv = P(4);
ac1 = P(5);
ac2 = P(6);
iw1 = P(7);
iw2 = P(8);
iwe = P(9);
flagg=P(10);
ergrd=P(11);
ergrdep=P(12);
plotflg=P(13);
% PLOTTING
message = sprintf('PSO: %%g/%g iterations, GBest = %%g.\n',me);
pos=40*rand(ps,D)-20;
vel=8*rand(ps,D)-4;
% initial pbest positions vals
pbest=pos;
for j=1:ps % start particle loop
numin='0';
for i=1:D
numin=strcat(numin,',',num2str(pos(j,i)));
end
% evstrg=strcat('feval(''',functname,'''',numin(2:end),',structure',')');
evstrg=strcat('feval(''myMI''',numin(2:end),',structure',')');
out(j)=eval(evstrg); % evaluate desired function with particle j
end
pbestval=out; % initially, pbest is same as pos
% assign initial gbest here also (gbest and gbestval)
if minmax==1
[gbestval,idx1]=max(pbestval); % this picks gbestval when we want to maximize the function
elseif minmax==0
[gbestval,idx1]=min(pbestval); % this works for straight minimization
end
gbest=pbest(idx1,:); % this is gbest position
tr(1)=gbestval; % save for output
% start PSO iterative procedures
cnt=0; % counter used for updating display according to df in the options
cnt2=0; % counter used for the stopping subroutine based on error convergence
for i=1:me % start epoch loop (iterations)
if flagg==0 % randimization control, one random set for each epoch
rannum1=rand(1);
rannum2=rand(2);
end
for j=1:ps % start particle loop
if flagg==1 % randomization control, one random set for each particle at each epoch
rannum1=rand(1);
rannum2=rand(1);
end
numin='0';
for dimcnt=1:D
numin=strcat(numin,',',num2str(pos(j,dimcnt)));
end
% evstrg=strcat('feval(''',functname,'''',numin(2:end),',structure',')');
evstrg=strcat('feval(''myMI''',numin(2:end),',structure',')');
out(j)=eval(evstrg); % evaluate desired function with particle j
e(j) = out(j); % use to minimize or maximize function to unknown values
%SSEhist(j) = sumsqr(e); % sum squared 'error' for jth particle (averages if there is more than one output)
% update pbest to reflect whether searching for max or min of function
if minmax==0
if pbestval(j)>=e(j);
pbestval(j)=e(j);
pbest(j,:)=pos(j,:);
end
elseif minmax==1
if pbestval(j)<=e(j);
pbestval(j)=e(j);
pbest(j,:)=pos(j,:);
end
end
% assign gbest by finding minimum of all particle pbests
if minmax==1
[iterbestval,idx1]=max(pbestval); % this picks gbestval when we want to maximize the function
if gbestval<=iterbestval
gbestval=iterbestval;
gbest=pbest(idx1,:);
end
elseif minmax==0
[iterbestval,idx1]=min(pbestval); % this works for straight minimization and for minimizing error to target
if gbestval>=iterbestval
gbestval=iterbestval;
gbest=pbest(idx1,:);
end
end
tr(i+1)=gbestval; % keep track of global best val
te=i; % this will return the epoch number to calling program when done
% get new velocities, positions (this is the heart of the PSO algorithm)
if i<=iwe
iwt(i)=((iw2-iw1)/(iwe-1))*(i-1)+iw1; % get inertia weight, just a linear funct w.r.t. epoch parameter iwe
else
iwt(i)=iw2;
end
if flagg==2 % each component of each particle gets a different random number set
for dimcnt=1:D
rannum1=rand(1);
rannum2=rand(1);
vel(j,dimcnt)=iwt(i)*vel(j,dimcnt)...
+ac1*rannum1*(pbest(j,dimcnt)-pos(j,dimcnt))...
+ac2*rannum2*(gbest(1,dimcnt)-pos(j,dimcnt));
end
else % this velocity update is for flagg= 0 or 1
vel(j,:)=iwt(i)*vel(j,:)...
+ac1*rannum1*(pbest(j,:)-pos(j,:))...
+ac2*rannum2*(gbest(1,:)-pos(j,:));
end
% update new position
pos(j,:)=pos(j,:)+vel(j,:);
% limit velocity/position components to maximums
for dimcnt=1:D
if vel(j,dimcnt)>mv
vel(j,dimcnt)=mv;
end
if vel(j,dimcnt)<-mv
vel(j,dimcnt)=-mv;
end
if pos(j,dimcnt)>=VR(dimcnt,2)
pos(j,dimcnt)=VR(dimcnt,2);
end
if pos(j,dimcnt)<=VR(dimcnt,1)
pos(j,dimcnt)=VR(dimcnt,1);
end
end
end % end particle loop
%----------------------------------------------------------------------------------------------------------------------
% check for stopping criterion based on speed of convergence to desired error
tmp1=abs(tr(i)-gbestval);
if tmp1>ergrd
cnt2=0;
elseif tmp1<=ergrd
cnt2=cnt2+1;
if cnt2>=ergrdep
if plotflg==1
fprintf(message,i,gbestval);
% disp(' ');
% disp('***** global error gradient too small for too long');
% disp('***** this means you''ve got the solution or it got stuck');
end
break
end
end
end % end epoch loop
OUT=[gbest';gbestval];
OUT(1:3)=round(OUT(1:3));
varargout{1}=[0:te];
varargout{2}=[tr];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -