📄 contents.m
字号:
% contents.m
%
% This directory contains a example files that illustrates
% some of the algorithm developed in the toolsvm or toolreg
%
% File | Comments
%
%
% ------------------------- Classification----------------------
%
% exclass | 2D SVM Classification problem
% |
% exclass1 | 2D SVM Classification problem with different C
% | penalization and wavelet kernels
% exclass2 | Comparing Gaussian Kernel and Polynomial Kernel on 2D
% | SVM Classification problem
% exclass3 | 2D SVM Classification with Semiparametric models
% |
% exclassalphainit | Example of initialization of the Lagragian
% | Multipliers in the QP Solver
% exclasscheckershaarkernel | Comparing Haar Kernel and Gaussian Kernel on
% | the checker problem
% exclasscheckershaarkernel2 | Comparing Haar Kernel and Gaussian Kernel on
% | the checker problem based on 100 trials
% exclassls | Example of large-scale classification problem
% |
% exclassrn | Regularization Networks for classifying the CheckerBoard
% | Problem
% exclassrn1 | SemiParametric Regularization Networks
% | Problem
% exmulticlass | Example of multiclass problem using
% | "one-against-all" algorithm
% exmulticlass1 | Treating the example presented by Lin & Wahba and analysing
% | "One against all" and "one-against-one" algorithm
% exmulticlass2 | Treating another example with "one-against-one" algorithm
% | and comparing the pdf of each class and decision bondaries
% exmulticlass1v1 | Example of multiclass problem using
% | "one-against-one" algorithm
% exmulticlassall | M-SVM algorithm for treating the multiclasse problem
% |
% exmulticlassall2 | Another M-SVM examples with assymetric penalization coefficients
%
% ------------------------- Regression---------------------------
% exreg1d | 1D SVM Regression problem
% |
% exreg2d | 2D SVM Regression problem
%
% ------------------------- Wavelet Kernels ---------------------
% extensorwavkernel | Example of the different possibility of wavelet kernel
% | On a classification problems
%
%-------------------------- Feature Selection -------------------
% FeatSelAdaptScal | Demo of the SVM adaptive scaling method of GrandValet & Canu
% |
% FeatSelAdaptScal1 | Example of adaptive scaling as described in the NIPS paper
% | See Grandvalet & Canu 2003
%---------------------------Kernel PCA -------------------------
% kpca1 | Simple Example of Kernel PCA on a artificial datasets
% kpca2 | Example of KPCA. this is a B.Scholkopf modified routine
% kpca3 | Example of Multilayer SVM with a KPCA as a first stage
% -------------- Parameters tuning algorithm--------------------
%
% tuningkerex1 | test error evaluation in 2D SVM Classification
% | problem wrt gaussian kernel bandwitdh
% tuningkerex2 | test error evaluation in 2D SVM Classification
% | problem wrt kernel bandwitdh for each coordinate
% tuningkerex3 | automatic setting of hyperparameters in 2D SVM Classification
% | by means of gradient descent and validation set.
% tuningkerex4 | test error estimation by means of Span Bound and all
% | its differents versions
% tuningkerex5 | automatic setting of hyperparameters in 2D SVM Classification
% | by means of gradient descent and SPAN bound
%
% -------------------Multiscale regularisation ------------------
%
% mregwav1 | Multiscale approximation with wavelet kernel
% mregwav2 | Multiscale approximation with sin/sinc kernel
% mregwav3 | Multiscale approximation with wavelet kernel for which
% | regularization parameters have been set by cross-validation
%
% ------------------Semiparametric SVM----------------------------
%
% semipsvmex1 | Semiparametric svm using wavelet span and kernel
% semipsvmex2 | Semiparametric svm using Gaussian kernel and sin span
%
% ------------------Frame / Frame Kernel -------------------------
%
% framekernelex1 | Script for wavelet kernel and gaussian kernel comparison
% | using SVM algorithm and Regularization networks
% framekernelex2 | Comparison of RKHS Kernel, Dual Green Kernel, Frame Green Kernel
% | within a semiparametric context
% framekernelex3 | Comparison of RKHS Kernel, Dual Green Kernel and
% | Frame Green Kernel Performance always in a SP context
% | with regularization parameter adjusted by a massive cross-validation
%
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -