⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 blocksort.c

📁 软件是使用VC70
💻 C
📖 第 1 页 / 共 3 页
字号:
      mpush (nextLo[2], nextHi[2], nextD[2]);
   }
}

#undef mswap
#undef mvswap
#undef mpush
#undef mpop
#undef mmin
#undef mnextsize
#undef mnextswap
#undef MAIN_QSORT_SMALL_THRESH
#undef MAIN_QSORT_DEPTH_THRESH
#undef MAIN_QSORT_STACK_SIZE


/*---------------------------------------------*/
/* Pre:
      nblock > N_OVERSHOOT
      block32 exists for [0 .. nblock-1 +N_OVERSHOOT]
      ((UChar*)block32) [0 .. nblock-1] holds block
      ptr exists for [0 .. nblock-1]

   Post:
      ((UChar*)block32) [0 .. nblock-1] holds block
      All other areas of block32 destroyed
      ftab [0 .. 65536 ] destroyed
      ptr [0 .. nblock-1] holds sorted order
      if (*budget < 0), sorting was abandoned
*/

#define BIGFREQ(b) (ftab[((b)+1) << 8] - ftab[(b) << 8])
#define SETMASK (1 << 21)
#define CLEARMASK (~(SETMASK))

static
void mainSort ( UInt32* ptr, 
                UChar*  block,
                UInt16* quadrant, 
                UInt32* ftab,
                Int32   nblock,
                Int32   verb,
                Int32*  budget )
{
   Int32  i, j, k, ss, sb;
   Int32  runningOrder[256];
   Bool   bigDone[256];
   Int32  copyStart[256];
   Int32  copyEnd  [256];
   UChar  c1;
   Int32  numQSorted;
   UInt16 s;
   if (verb >= 4) VPrintf0 ( "        main sort initialise ...\n" );

   /*-- set up the 2-byte frequency table --*/
   for (i = 65536; i >= 0; i--) ftab[i] = 0;

   j = block[0] << 8;
   i = nblock-1;
   for (; i >= 3; i -= 4) {
      quadrant[i] = 0;
      j = (j >> 8) | ( ((UInt16)block[i]) << 8);
      ftab[j]++;
      quadrant[i-1] = 0;
      j = (j >> 8) | ( ((UInt16)block[i-1]) << 8);
      ftab[j]++;
      quadrant[i-2] = 0;
      j = (j >> 8) | ( ((UInt16)block[i-2]) << 8);
      ftab[j]++;
      quadrant[i-3] = 0;
      j = (j >> 8) | ( ((UInt16)block[i-3]) << 8);
      ftab[j]++;
   }
   for (; i >= 0; i--) {
      quadrant[i] = 0;
      j = (j >> 8) | ( ((UInt16)block[i]) << 8);
      ftab[j]++;
   }

   /*-- (emphasises close relationship of block & quadrant) --*/
   for (i = 0; i < BZ_N_OVERSHOOT; i++) {
      block   [nblock+i] = block[i];
      quadrant[nblock+i] = 0;
   }

   if (verb >= 4) VPrintf0 ( "        bucket sorting ...\n" );

   /*-- Complete the initial radix sort --*/
   for (i = 1; i <= 65536; i++) ftab[i] += ftab[i-1];

   s = block[0] << 8;
   i = nblock-1;
   for (; i >= 3; i -= 4) {
      s = (s >> 8) | (block[i] << 8);
      j = ftab[s] -1;
      ftab[s] = j;
      ptr[j] = i;
      s = (s >> 8) | (block[i-1] << 8);
      j = ftab[s] -1;
      ftab[s] = j;
      ptr[j] = i-1;
      s = (s >> 8) | (block[i-2] << 8);
      j = ftab[s] -1;
      ftab[s] = j;
      ptr[j] = i-2;
      s = (s >> 8) | (block[i-3] << 8);
      j = ftab[s] -1;
      ftab[s] = j;
      ptr[j] = i-3;
   }
   for (; i >= 0; i--) {
      s = (s >> 8) | (block[i] << 8);
      j = ftab[s] -1;
      ftab[s] = j;
      ptr[j] = i;
   }

   /*--
      Now ftab contains the first loc of every small bucket.
      Calculate the running order, from smallest to largest
      big bucket.
   --*/
   for (i = 0; i <= 255; i++) {
      bigDone     [i] = False;
      runningOrder[i] = i;
   }

   {
      Int32 vv;
      Int32 h = 1;
      do h = 3 * h + 1; while (h <= 256);
      do {
         h = h / 3;
         for (i = h; i <= 255; i++) {
            vv = runningOrder[i];
            j = i;
            while ( BIGFREQ(runningOrder[j-h]) > BIGFREQ(vv) ) {
               runningOrder[j] = runningOrder[j-h];
               j = j - h;
               if (j <= (h - 1)) goto zero;
            }
            zero:
            runningOrder[j] = vv;
         }
      } while (h != 1);
   }

   /*--
      The main sorting loop.
   --*/

   numQSorted = 0;

   for (i = 0; i <= 255; i++) {

      /*--
         Process big buckets, starting with the least full.
         Basically this is a 3-step process in which we call
         mainQSort3 to sort the small buckets [ss, j], but
         also make a big effort to avoid the calls if we can.
      --*/
      ss = runningOrder[i];

      /*--
         Step 1:
         Complete the big bucket [ss] by quicksorting
         any unsorted small buckets [ss, j], for j != ss.  
         Hopefully previous pointer-scanning phases have already
         completed many of the small buckets [ss, j], so
         we don't have to sort them at all.
      --*/
      for (j = 0; j <= 255; j++) {
         if (j != ss) {
            sb = (ss << 8) + j;
            if ( ! (ftab[sb] & SETMASK) ) {
               Int32 lo = ftab[sb]   & CLEARMASK;
               Int32 hi = (ftab[sb+1] & CLEARMASK) - 1;
               if (hi > lo) {
                  if (verb >= 4)
                     VPrintf4 ( "        qsort [0x%x, 0x%x]   "
                                "done %d   this %d\n",
                                ss, j, numQSorted, hi - lo + 1 );
                  mainQSort3 ( 
                     ptr, block, quadrant, nblock, 
                     lo, hi, BZ_N_RADIX, budget 
                  );   
                  numQSorted += (hi - lo + 1);
                  if (*budget < 0) return;
               }
            }
            ftab[sb] |= SETMASK;
         }
      }

      AssertH ( !bigDone[ss], 1006 );

      /*--
         Step 2:
         Now scan this big bucket [ss] so as to synthesise the
         sorted order for small buckets [t, ss] for all t,
         including, magically, the bucket [ss,ss] too.
         This will avoid doing Real Work in subsequent Step 1's.
      --*/
      {
         for (j = 0; j <= 255; j++) {
            copyStart[j] =  ftab[(j << 8) + ss]     & CLEARMASK;
            copyEnd  [j] = (ftab[(j << 8) + ss + 1] & CLEARMASK) - 1;
         }
         for (j = ftab[ss << 8] & CLEARMASK; j < copyStart[ss]; j++) {
            k = ptr[j]-1; if (k < 0) k += nblock;
            c1 = block[k];
            if (!bigDone[c1])
               ptr[ copyStart[c1]++ ] = k;
         }
         for (j = (ftab[(ss+1) << 8] & CLEARMASK) - 1; j > copyEnd[ss]; j--) {
            k = ptr[j]-1; if (k < 0) k += nblock;
            c1 = block[k];
            if (!bigDone[c1]) 
               ptr[ copyEnd[c1]-- ] = k;
         }
      }

      AssertH ( (copyStart[ss]-1 == copyEnd[ss])
                || 
                /* Extremely rare case missing in bzip2-1.0.0 and 1.0.1.
                   Necessity for this case is demonstrated by compressing 
                   a sequence of approximately 48.5 million of character 
                   251; 1.0.0/1.0.1 will then die here. */
                (copyStart[ss] == 0 && copyEnd[ss] == nblock-1),
                1007 )

      for (j = 0; j <= 255; j++) ftab[(j << 8) + ss] |= SETMASK;

      /*--
         Step 3:
         The [ss] big bucket is now done.  Record this fact,
         and update the quadrant descriptors.  Remember to
         update quadrants in the overshoot area too, if
         necessary.  The "if (i < 255)" test merely skips
         this updating for the last bucket processed, since
         updating for the last bucket is pointless.

         The quadrant array provides a way to incrementally
         cache sort orderings, as they appear, so as to 
         make subsequent comparisons in fullGtU() complete
         faster.  For repetitive blocks this makes a big
         difference (but not big enough to be able to avoid
         the fallback sorting mechanism, exponential radix sort).

         The precise meaning is: at all times:

            for 0 <= i < nblock and 0 <= j <= nblock

            if block[i] != block[j], 

               then the relative values of quadrant[i] and 
                    quadrant[j] are meaningless.

               else {
                  if quadrant[i] < quadrant[j]
                     then the string starting at i lexicographically
                     precedes the string starting at j

                  else if quadrant[i] > quadrant[j]
                     then the string starting at j lexicographically
                     precedes the string starting at i

                  else
                     the relative ordering of the strings starting
                     at i and j has not yet been determined.
               }
      --*/
      bigDone[ss] = True;

      if (i < 255) {
         Int32 bbStart  = ftab[ss << 8] & CLEARMASK;
         Int32 bbSize   = (ftab[(ss+1) << 8] & CLEARMASK) - bbStart;
         Int32 shifts   = 0;

         while ((bbSize >> shifts) > 65534) shifts++;

         for (j = bbSize-1; j >= 0; j--) {
            Int32 a2update     = ptr[bbStart + j];
            UInt16 qVal        = (UInt16)(j >> shifts);
            quadrant[a2update] = qVal;
            if (a2update < BZ_N_OVERSHOOT)
               quadrant[a2update + nblock] = qVal;
         }
         AssertH ( ((bbSize-1) >> shifts) <= 65535, 1002 );
      }

   }

   if (verb >= 4)
      VPrintf3 ( "        %d pointers, %d sorted, %d scanned\n",
                 nblock, numQSorted, nblock - numQSorted );
}

#undef BIGFREQ
#undef SETMASK
#undef CLEARMASK


/*---------------------------------------------*/
/* Pre:
      nblock > 0
      arr2 exists for [0 .. nblock-1 +N_OVERSHOOT]
      ((UChar*)arr2)  [0 .. nblock-1] holds block
      arr1 exists for [0 .. nblock-1]

   Post:
      ((UChar*)arr2) [0 .. nblock-1] holds block
      All other areas of block destroyed
      ftab [ 0 .. 65536 ] destroyed
      arr1 [0 .. nblock-1] holds sorted order
*/
void BZ2_blockSort ( EState* s )
{
   UInt32* ptr    = s->ptr; 
   UChar*  block  = s->block;
   UInt32* ftab   = s->ftab;
   Int32   nblock = s->nblock;
   Int32   verb   = s->verbosity;
   Int32   wfact  = s->workFactor;
   UInt16* quadrant;
   Int32   budget;
   Int32   budgetInit;
   Int32   i;

   if (nblock < 10000) {
      fallbackSort ( s->arr1, s->arr2, ftab, nblock, verb );
   } else {
      /* Calculate the location for quadrant, remembering to get
         the alignment right.  Assumes that &(block[0]) is at least
         2-byte aligned -- this should be ok since block is really
         the first section of arr2.
      */
      i = nblock+BZ_N_OVERSHOOT;
      if (i & 1) i++;
      quadrant = (UInt16*)(&(block[i]));

      /* (wfact-1) / 3 puts the default-factor-30
         transition point at very roughly the same place as 
         with v0.1 and v0.9.0.  
         Not that it particularly matters any more, since the
         resulting compressed stream is now the same regardless
         of whether or not we use the main sort or fallback sort.
      */
      if (wfact < 1  ) wfact = 1;
      if (wfact > 100) wfact = 100;
      budgetInit = nblock * ((wfact-1) / 3);
      budget = budgetInit;

      mainSort ( ptr, block, quadrant, ftab, nblock, verb, &budget );
      if (verb >= 3) 
         VPrintf3 ( "      %d work, %d block, ratio %5.2f\n",
                    budgetInit - budget,
                    nblock, 
                    (float)(budgetInit - budget) /
                    (float)(nblock==0 ? 1 : nblock) ); 
      if (budget < 0) {
         if (verb >= 2) 
            VPrintf0 ( "    too repetitive; using fallback"
                       " sorting algorithm\n" );
         fallbackSort ( s->arr1, s->arr2, ftab, nblock, verb );
      }
   }

   s->origPtr = -1;
   for (i = 0; i < s->nblock; i++)
      if (ptr[i] == 0)
         { s->origPtr = i; break; };

   AssertH( s->origPtr != -1, 1003 );
}


/*-------------------------------------------------------------*/
/*--- end                                       blocksort.c ---*/
/*-------------------------------------------------------------*/

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -