📄 sacsng.c
字号:
* Note: iop is used by the I2C macros, and iopa by the ADC/DAC initialization. */ volatile ioport_t *iopa = ioport_addr((immap_t *)CFG_IMMR, 0 /* port A */); volatile ioport_t *iop = ioport_addr((immap_t *)CFG_IMMR, I2C_PORT); int reg; /* I2C register value */ char *ep; /* Environment pointer */ char str_buf[12] ; /* sprintf output buffer */ int sample_rate; /* ADC/DAC sample rate */ int sample_64x; /* Use 64/4 clocking for the ADC/DAC */ int sample_128x; /* Use 128/4 clocking for the ADC/DAC */ int right_just; /* Is the data to the DAC right justified? */ int mclk_divide; /* MCLK Divide */ int quiet; /* Quiet or minimal output mode */ quiet = 0; if ((ep = getenv("quiet")) != NULL) { quiet = simple_strtol(ep, NULL, 10); } else { setenv("quiet", "0"); } /* * SACSng custom initialization: * Start the ADC and DAC clocks, since the Crystal parts do not * work on the I2C bus until the clocks are running. */ sample_rate = INITIAL_SAMPLE_RATE; if ((ep = getenv("DaqSampleRate")) != NULL) { sample_rate = simple_strtol(ep, NULL, 10); } sample_64x = INITIAL_SAMPLE_64X; sample_128x = INITIAL_SAMPLE_128X; if ((ep = getenv("Daq64xSampling")) != NULL) { sample_64x = simple_strtol(ep, NULL, 10); if (sample_64x) { sample_128x = 0; } else { sample_128x = 1; } } else { if ((ep = getenv("Daq128xSampling")) != NULL) { sample_128x = simple_strtol(ep, NULL, 10); if (sample_128x) { sample_64x = 0; } else { sample_64x = 1; } } } /* * Stop the clocks and wait for at least 1 LRCLK period * to make sure the clocking has really stopped. */ Daq_Stop_Clocks(); udelay((1000000 / sample_rate) * NUM_LRCLKS_TO_STABILIZE); /* * Initialize the clocks with the new rates */ Daq_Init_Clocks(sample_rate, sample_64x); sample_rate = Daq_Get_SampleRate(); /* * Start the clocks and wait for at least 1 LRCLK period * to make sure the clocking has become stable. */ Daq_Start_Clocks(sample_rate); udelay((1000000 / sample_rate) * NUM_LRCLKS_TO_STABILIZE); sprintf(str_buf, "%d", sample_rate); setenv("DaqSampleRate", str_buf); if (sample_64x) { setenv("Daq64xSampling", "1"); setenv("Daq128xSampling", NULL); } else { setenv("Daq64xSampling", NULL); setenv("Daq128xSampling", "1"); } /* * Display the ADC/DAC clocking information */ if (!quiet) { Daq_Display_Clocks(); } /* * Determine the DAC data justification */ right_just = INITIAL_RIGHT_JUST; if ((ep = getenv("DaqDACRightJustified")) != NULL) { right_just = simple_strtol(ep, NULL, 10); } sprintf(str_buf, "%d", right_just); setenv("DaqDACRightJustified", str_buf); /* * Determine the DAC MCLK Divide */ mclk_divide = INITIAL_MCLK_DIVIDE; if ((ep = getenv("DaqDACMClockDivide")) != NULL) { mclk_divide = simple_strtol(ep, NULL, 10); } sprintf(str_buf, "%d", mclk_divide); setenv("DaqDACMClockDivide", str_buf); /* * Initializing the I2C address in the Crystal A/Ds: * * 1) Wait for VREF cap to settle (10uSec per uF) * 2) Release pullup on SDATA * 3) Write the I2C address to register 6 * 4) Enable address matching by setting the MSB in register 7 */ if (!quiet) { printf("Initializing the ADC...\n"); } udelay(ADC_INITIAL_DELAY); /* 10uSec per uF of VREF cap */ iopa->pdat &= ~ADC_SDATA1_MASK; /* release SDATA1 */ udelay(ADC_SDATA_DELAY); /* arbitrary settling time */ i2c_reg_write(0x00, 0x06, I2C_ADC_1_ADDR); /* set address */ i2c_reg_write(I2C_ADC_1_ADDR, 0x07, /* turn on ADDREN */ ADC_REG7_ADDR_ENABLE); i2c_reg_write(I2C_ADC_1_ADDR, 0x02, /* 128x, slave mode, !HPEN */ (sample_64x ? 0 : ADC_REG2_128x) | ADC_REG2_HIGH_PASS_DIS | ADC_REG2_SLAVE_MODE); reg = i2c_reg_read(I2C_ADC_1_ADDR, 0x06) & 0x7F; if(reg != I2C_ADC_1_ADDR) printf("Init of ADC U10 failed: address is 0x%02X should be 0x%02X\n", reg, I2C_ADC_1_ADDR); iopa->pdat &= ~ADC_SDATA2_MASK; /* release SDATA2 */ udelay(ADC_SDATA_DELAY); /* arbitrary settling time */ i2c_reg_write(0x00, 0x06, I2C_ADC_2_ADDR); /* set address (do not set ADDREN yet) */ i2c_reg_write(I2C_ADC_2_ADDR, 0x02, /* 64x, slave mode, !HPEN */ (sample_64x ? 0 : ADC_REG2_128x) | ADC_REG2_HIGH_PASS_DIS | ADC_REG2_SLAVE_MODE); reg = i2c_reg_read(I2C_ADC_2_ADDR, 0x06) & 0x7F; if(reg != I2C_ADC_2_ADDR) printf("Init of ADC U15 failed: address is 0x%02X should be 0x%02X\n", reg, I2C_ADC_2_ADDR); i2c_reg_write(I2C_ADC_1_ADDR, 0x01, /* set FSTART and GNDCAL */ ADC_REG1_FRAME_START | ADC_REG1_GROUND_CAL); i2c_reg_write(I2C_ADC_1_ADDR, 0x02, /* Start calibration */ (sample_64x ? 0 : ADC_REG2_128x) | ADC_REG2_CAL | ADC_REG2_HIGH_PASS_DIS | ADC_REG2_SLAVE_MODE); udelay(ADC_CAL_DELAY); /* a minimum of 4100 LRCLKs */ i2c_reg_write(I2C_ADC_1_ADDR, 0x01, 0x00); /* remove GNDCAL */ /* * Now that we have synchronized the ADC's, enable address * selection on the second ADC as well as the first. */ i2c_reg_write(I2C_ADC_2_ADDR, 0x07, ADC_REG7_ADDR_ENABLE); /* * Initialize the Crystal DAC * * Two of the config lines are used for I2C so we have to set them * to the proper initialization state without inadvertantly * sending an I2C "start" sequence. When we bring the I2C back to * the normal state, we send an I2C "stop" sequence. */ if (!quiet) { printf("Initializing the DAC...\n"); } /* * Bring the I2C clock and data lines low for initialization */ I2C_SCL(0); I2C_DELAY; I2C_SDA(0); I2C_ACTIVE; I2C_DELAY; /* Reset the DAC */ iopa->pdat &= ~DAC_RST_MASK; udelay(DAC_RESET_DELAY); /* Release the DAC reset */ iopa->pdat |= DAC_RST_MASK; udelay(DAC_INITIAL_DELAY); /* * Cause the DAC to: * Enable control port (I2C mode) * Going into power down */ i2c_reg_write(I2C_DAC_ADDR, 0x05, DAC_REG5_I2C_MODE | DAC_REG5_POWER_DOWN); /* * Cause the DAC to: * Enable control port (I2C mode) * Going into power down * . MCLK divide by 1 * . MCLK divide by 2 */ i2c_reg_write(I2C_DAC_ADDR, 0x05, DAC_REG5_I2C_MODE | DAC_REG5_POWER_DOWN | (mclk_divide ? DAC_REG5_MCLK_DIV : 0)); /* * Cause the DAC to: * Auto-mute disabled * . Format 0, left justified 24 bits * . Format 3, right justified 24 bits * No de-emphasis * . Single speed mode * . Double speed mode */ i2c_reg_write(I2C_DAC_ADDR, 0x01, (right_just ? DAC_REG1_RIGHT_JUST_24BIT : DAC_REG1_LEFT_JUST_24_BIT) | DAC_REG1_DEM_NO | (sample_rate >= 50000 ? DAC_REG1_DOUBLE : DAC_REG1_SINGLE)); sprintf(str_buf, "%d", sample_rate >= 50000 ? DAC_REG1_DOUBLE : DAC_REG1_SINGLE); setenv("DaqDACFunctionalMode", str_buf); /* * Cause the DAC to: * Enable control port (I2C mode) * Remove power down * . MCLK divide by 1 * . MCLK divide by 2 */ i2c_reg_write(I2C_DAC_ADDR, 0x05, DAC_REG5_I2C_MODE | (mclk_divide ? DAC_REG5_MCLK_DIV : 0)); /* * Create a I2C stop condition: * low->high on data while clock is high. */ I2C_SCL(1); I2C_DELAY; I2C_SDA(1); I2C_DELAY; I2C_TRISTATE; if (!quiet) { printf("\n"); }#ifdef CONFIG_ETHER_LOOPBACK_TEST /* * Run the Ethernet loopback test */ eth_loopback_test ();#endif /* CONFIG_ETHER_LOOPBACK_TEST */#ifdef CONFIG_SHOW_BOOT_PROGRESS /* * Turn off the RED fail LED now that we are up and running. */ status_led_set(STATUS_LED_RED, STATUS_LED_OFF);#endif return 0;}#ifdef CONFIG_SHOW_BOOT_PROGRESS/* * Show boot status: flash the LED if something goes wrong, indicating * that last thing that worked and thus, by implication, what is broken. * * This stores the last OK value in RAM so this will not work properly * before RAM is initialized. Since it is being used for indicating * boot status (i.e. after RAM is initialized), that is OK. */static void flash_code(uchar number, uchar modulo, uchar digits){ int j; /* * Recursively do upper digits. */ if(digits > 1) { flash_code(number / modulo, modulo, digits - 1); } number = number % modulo; /* * Zero is indicated by one long flash (dash). */ if(number == 0) { status_led_set(STATUS_LED_BOOT, STATUS_LED_ON); udelay(1000000); status_led_set(STATUS_LED_BOOT, STATUS_LED_OFF); udelay(200000); } else { /* * Non-zero is indicated by short flashes, one per count. */ for(j = 0; j < number; j++) { status_led_set(STATUS_LED_BOOT, STATUS_LED_ON); udelay(100000); status_led_set(STATUS_LED_BOOT, STATUS_LED_OFF); udelay(200000); } } /* * Inter-digit pause: we've already waited 200 mSec, wait 1 sec total */ udelay(700000);}static int last_boot_progress;void show_boot_progress (int status){ int i,j; if(status > 0) { last_boot_progress = status; } else { /* * If a specific failure code is given, flash this code * else just use the last success code we've seen */ if(status < -1) last_boot_progress = -status; /* * Flash this code 5 times */ for(j=0; j<5; j++) { /* * Houston, we have a problem. * Blink the last OK status which indicates where things failed. */ status_led_set(STATUS_LED_RED, STATUS_LED_ON); flash_code(last_boot_progress, 5, 3); /* * Delay 5 seconds between repetitions, * with the fault LED blinking */ for(i=0; i<5; i++) { status_led_set(STATUS_LED_RED, STATUS_LED_OFF); udelay(500000); status_led_set(STATUS_LED_RED, STATUS_LED_ON); udelay(500000); } } /* * Reset the board to retry initialization. */ do_reset (NULL, 0, 0, NULL); }}#endif /* CONFIG_SHOW_BOOT_PROGRESS *//* * The following are used to control the SPI chip selects for the SPI command. */#if (CONFIG_COMMANDS & CFG_CMD_SPI)#define SPI_ADC_CS_MASK 0x00000800#define SPI_DAC_CS_MASK 0x00001000void spi_adc_chipsel(int cs){ volatile ioport_t *iopd = ioport_addr((immap_t *)CFG_IMMR, 3 /* port D */); if(cs) iopd->pdat &= ~SPI_ADC_CS_MASK; /* activate the chip select */ else iopd->pdat |= SPI_ADC_CS_MASK; /* deactivate the chip select */}void spi_dac_chipsel(int cs){ volatile ioport_t *iopd = ioport_addr((immap_t *)CFG_IMMR, 3 /* port D */); if(cs) iopd->pdat &= ~SPI_DAC_CS_MASK; /* activate the chip select */ else iopd->pdat |= SPI_DAC_CS_MASK; /* deactivate the chip select */}/* * The SPI command uses this table of functions for controlling the SPI * chip selects: it calls the appropriate function to control the SPI * chip selects. */spi_chipsel_type spi_chipsel[] = { spi_adc_chipsel, spi_dac_chipsel};int spi_chipsel_cnt = sizeof(spi_chipsel) / sizeof(spi_chipsel[0]);#endif /* CFG_CMD_SPI */#endif /* CONFIG_MISC_INIT_R */#ifdef CONFIG_POST/* * Returns 1 if keys pressed to start the power-on long-running tests * Called from board_init_f(). */int post_hotkeys_pressed(void){ return 0; /* No hotkeys supported */}#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -