⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 第二节 用mathematica求极限和求微分.htm

📁 Mathematica软件包的介绍
💻 HTM
📖 第 1 页 / 共 5 页
字号:
<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=gb2312">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>第二节 用Mathematica求极限和求微分</title>
</head>

<body bgcolor="#00FFFF">

<P align=center class=MsoNormal style="text-align: center; line-height: 200%"><font face="宋体"><a href="index.htm"><span style="mso-hansi-font-family: Times New Roman; mso-ascii-font-family: Times New Roman">主目录</span></a><span style="mso-hansi-font-family: Times New Roman; mso-ascii-font-family: Times New Roman">  
| <a href="第二节%20用Mathematica求极限和求微分.htm"></a> <a href="第一节%20Mathematica快速入门.htm">第一节</a>        
| <a href="第二节%20用Mathematica求极限和求微分.htm">第二节</a> | <a href="第三节%20用Mathematica作积分计算.htm">第三节</a>        
| <a href="第四节%20用Mathematica解方程和作级数运算.htm">第四节</a>        
| <a href="第五节%20用Mathematica进行向量运算和作图.htm">第五节</a>        
| <a href="第六节%20Mathematica编程基础.htm">第六节</a></span></font></P>        
      
<P align=center class=MsoNormal        
style="text-align: center; text-indent: 17.95pt; line-height: 200%"> </P>      
     
<P align=center class=MsoNormal      
style="text-align: center; text-indent: 17.95pt; line-height: 200%"><b><SPAN     
style="mso-hansi-font-family: Times New Roman; mso-ascii-font-family: Times New Roman"><font face="宋体" color="#FF0000" size="5">第二节</font></SPAN>     
<font face="宋体" color="#FF0000" size="5">      
<SPAN          
style="FONT-FAMILY: 宋体; mso-hansi-font-family: 'Times New Roman'; mso-ascii-font-family: 'Times New Roman'">用</SPAN><SPAN          
lang=EN-US>Mathematica</SPAN><SPAN          
style="mso-hansi-font-family: Times New Roman; mso-ascii-font-family: Times New Roman">求极限和求微分</SPAN></font></b></P>         
<P class=MsoNormal style="line-height: 200%"><b><SPAN         
style="mso-hansi-font-family: Times New Roman; mso-ascii-font-family: Times New Roman"><font face="宋体" size="4">&nbsp;&nbsp;&nbsp;   
极限是微积分的重要基础,微分是微积分的重要组成部分。本节分为两部分,我们将分别讨论</font></SPAN><font face="宋体" size="4"><SPAN         
lang=EN-US>Mathematica4.0</SPAN><SPAN         
style="mso-hansi-font-family: Times New Roman; mso-ascii-font-family: Times New Roman">处理极限和微分的方法。</SPAN></font></b></P>        
<P class=MsoNormal style="line-height: 200%"><SPAN         
style="mso-hansi-font-family: Times New Roman; mso-ascii-font-family: Times New Roman"><b><font face="宋体" size="5" color="#FF0000">一、<a name="极限">极限</a></font></b></SPAN></P>      
<P class=BodyText2 style="line-height: 200%"><SPAN       
style="mso-hansi-font-family: Times New Roman; mso-ascii-font-family: Times New Roman"><b><font face="宋体" size="4">&nbsp;&nbsp;&nbsp;   
为了掌握变量的变化规律,往往需要从它的变化过程中来判断它的变化趋势,于是极限方法就逐渐形成了。在高等数学中有很多重要的概念和方法都和极限有关,微积分学中处理变量的基本方法就是极限,这种方法是建立在无限观念的基础上的,因而它与处理常量的基本方法有着本质的区别。它已成为高等数学中的一种基本方法。研究极限将为学习好微积分打好基础。</font></b></SPAN></P>      
<P class=MsoNormal style="text-indent: 17.95pt; line-height: 200%"><SPAN       
lang=EN-US><b><font face="宋体"><font size="4">Mathematica4.0</font></font></b></SPAN><font face="宋体"><b><font size="4"><SPAN      
style="mso-hansi-font-family: Times New Roman; mso-ascii-font-family: Times New Roman">提供的用于求解极限的函数如下:</SPAN></font></b></font></P>     
<P align=left class=MsoNormal      
style="text-indent: 17.95pt; line-height: 200%"><SPAN      
lang=EN-US><b><font face="宋体"><font size="4">Limit[expr,x-&gt;<SPAN style="mso-text-raise: -6.0pt"><!--[if gte vml 1]><V:SHAPETYPE id=_x0000_t75     
stroked="f" filled="f" path="m@4@5l@4@11@9@11@9@5xe" o:preferrelative="t"     
o:spt="75" coordsize="21600,21600"> <V:STROKE joinstyle="miter"><V:FORMULAS><V:F     
eqn="if lineDrawn pixelLineWidth 0"><V:F eqn="sum @0 1 0"><V:F     
eqn="sum 0 0 @1"><V:F eqn="prod @2 1 2"><V:F eqn="prod @3 21600 pixelWidth"><V:F     
eqn="prod @3 21600 pixelHeight"><V:F eqn="sum @0 0 1"><V:F     
eqn="prod @6 1 2"><V:F eqn="prod @7 21600 pixelWidth"><V:F     
eqn="sum @8 21600 0"><V:F eqn="prod @7 21600 pixelHeight"><V:F     
eqn="sum @10 21600 0"></V:FORMULAS><V:PATH o:connecttype="rect"     
gradientshapeok="t" o:extrusionok="f"><O:LOCK aspectratio="t"     
v:ext="edit"></V:SHAPETYPE><V:SHAPE id=_x0000_i1025     
style="HEIGHT: 18pt; WIDTH: 14.25pt" o:ole="" type="#_x0000_t75"><V:IMAGEDATA     
o:title=""     
src="file:///C:/WINDOWS/TEMP/msoclip1/01/clip_image001.wmz"></V:SHAPE><![endif]--><IMG src="images/2.htm16.gif"     
v:shapes="_x0000_i1025" width="12" height="11"></SPAN><!--[if gte mso 9]><xml>    
 <o:OLEObject Type="Embed" ProgID="Equation.3" ShapeID="_x0000_i1025"    
  DrawAspect="Content" ObjectID="_1048959238">    
 </o:OLEObject>    
</xml><![endif]-->     
]<SPAN style="mso-spacerun: yes">&nbsp;&nbsp;&nbsp;&nbsp;<br>  
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;  
</SPAN></font></font></b></SPAN><font face="宋体"><b><font size="4"><SPAN        
lang=EN-US style="mso-font-kerning: 0pt">x趋近于<SPAN        
style="mso-text-raise: -6.0pt"><!--[if gte vml 1]><V:SHAPE id=_x0000_i1026        
style="HEIGHT: 18pt; WIDTH: 14.25pt" o:ole="" type="#_x0000_t75"> <V:IMAGEDATA        
o:title=""        
src="file:///C:/WINDOWS/TEMP/msoclip1/01/clip_image001.wmz"></V:SHAPE><![endif]--><IMG src="images/2.htm17.gif"        
v:shapes="_x0000_i1026" width="12" height="11"></SPAN><!--[if gte mso 9]><xml>       
 <o:OLEObject Type="Embed" ProgID="Equation.3" ShapeID="_x0000_i1026"       
  DrawAspect="Content" ObjectID="_1048959239">       
 </o:OLEObject>       
</xml><![endif]-->        
时expr的极限,<SPAN style="mso-text-raise: -6.0pt"><br>  
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <!--[if gte vml 1]><V:SHAPE          
id=_x0000_i1027 style="HEIGHT: 18pt; WIDTH: 14.25pt" o:ole=""         
type="#_x0000_t75"> <V:IMAGEDATA o:title=""         
src="file:///C:/WINDOWS/TEMP/msoclip1/01/clip_image001.wmz"></V:SHAPE><![endif]--><IMG src="images/2.htm18.gif"         
v:shapes="_x0000_i1027" width="12" height="11"></SPAN><!--[if gte mso 9]><xml>        
 <o:OLEObject Type="Embed" ProgID="Equation.3" ShapeID="_x0000_i1027"        
  DrawAspect="Content" ObjectID="_1048959240">        
 </o:OLEObject>        
</xml><![endif]-->         
</SPAN><SPAN           
style="FONT-FAMILY: 宋体; mso-hansi-font-family: 'Times New Roman'; mso-ascii-font-family: 'Times New Roman'">可以为</SPAN><SPAN          
lang=EN-US>Infinty(+<SPAN         
style="mso-text-raise: -2.0pt"><!--[if gte vml 1]><V:SHAPE id=_x0000_i1028         
style="HEIGHT: 7.5pt; WIDTH: 12pt" o:ole="" type="#_x0000_t75"> <V:IMAGEDATA         
o:title=""         
src="file:///C:/WINDOWS/TEMP/msoclip1/01/clip_image005.wmz"></V:SHAPE><![endif]--><IMG src="images/2.htm19.gif"         
v:shapes="_x0000_i1028" width="16" height="10"></SPAN><!--[if gte mso 9]><xml>        
 <o:OLEObject Type="Embed" ProgID="Equation.3" ShapeID="_x0000_i1028"        
  DrawAspect="Content" ObjectID="_1048959241">        
 </o:OLEObject>        
</xml><![endif]-->         
)</SPAN><SPAN           
style="mso-hansi-font-family: Times New Roman; mso-ascii-font-family: Times New Roman">,</SPAN><SPAN          
lang=EN-US>-Infinity(-<SPAN          
style="mso-text-raise: -2.0pt"><!--[if gte vml 1]><V:SHAPE id=_x0000_i1029          
style="HEIGHT: 7.5pt; WIDTH: 12pt" o:ole="" type="#_x0000_t75"> <V:IMAGEDATA          
o:title=""          
src="file:///C:/WINDOWS/TEMP/msoclip1/01/clip_image005.wmz"></V:SHAPE><![endif]--><IMG src="images/2.htm20.gif"          
v:shapes="_x0000_i1029" width="16" height="10"></SPAN><!--[if gte mso 9]><xml>         
 <o:OLEObject Type="Embed" ProgID="Equation.3" ShapeID="_x0000_i1029"         
  DrawAspect="Content" ObjectID="_1048959242">         
 </o:OLEObject>         
</xml><![endif]-->          
)</SPAN><SPAN lang=EN-US           
style="mso-hansi-font-family: Times New Roman; mso-font-kerning: 0pt"><O:P>          
</O:P></SPAN></font></b></font></P>         
<P align=left class=MsoNormal          
style="text-indent: 17.95pt; line-height: 200%"><b><SPAN         
lang=EN-US><font face="宋体" size="4">Limit[expr,x-&gt;<SPAN style="mso-text-raise: -6.0pt"><!--[if gte vml 1]><V:SHAPE id=_x0000_i1030        
style="HEIGHT: 18pt; WIDTH: 14.25pt" o:ole="" type="#_x0000_t75"> <V:IMAGEDATA        
o:title=""        
src="file:///C:/WINDOWS/TEMP/msoclip1/01/clip_image001.wmz"></V:SHAPE><![endif]--><IMG src="images/2.htm21.gif" width="12" height="11"        
></SPAN><!--[if gte mso 9]><xml>       
 <o:OLEObject Type="Embed" ProgID="Equation.3" ShapeID="_x0000_i1030"       
  DrawAspect="Content" ObjectID="_1048959243">       
 </o:OLEObject>       
</xml><![endif]-->        
,Direction-&gt;1]<SPAN style="mso-spacerun: yes">&nbsp;&nbsp;&nbsp;&nbsp;<br>  
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;  
</SPAN></font></SPAN><font face="宋体" size="4"><SPAN lang=EN-US         
style="mso-font-kerning: 0pt">x趋近于<SPAN         
style="mso-text-raise: -6.0pt"><!--[if gte vml 1]><V:SHAPE id=_x0000_i1031         
style="HEIGHT: 18.75pt; WIDTH: 15pt" o:ole="" type="#_x0000_t75"> <V:IMAGEDATA         
o:title=""         
src="file:///C:/WINDOWS/TEMP/msoclip1/01/clip_image009.wmz"></V:SHAPE><![endif]--><IMG src="images/2.htm22.gif"         
v:shapes="_x0000_i1031" width="20" height="25"></SPAN><!--[if gte mso 9]><xml>        
 <o:OLEObject Type="Embed" ProgID="Equation.3" ShapeID="_x0000_i1031"        
  DrawAspect="Content" ObjectID="_1048959244">        
 </o:OLEObject>        
</xml><![endif]-->         
时expr的极限</SPAN></font></b></P>          
<P align=left class=MsoNormal          
style="text-indent: 17.95pt; line-height: 200%"><SPAN          
lang=EN-US><b><font face="宋体"><font size="4">Limit[expr,x-&gt;<SPAN style="mso-text-raise: -6.0pt"><!--[if gte vml 1]><V:SHAPE id=_x0000_i1032       
style="HEIGHT: 18pt; WIDTH: 14.25pt" o:ole="" type="#_x0000_t75"> <V:IMAGEDATA       
o:title=""       
src="file:///C:/WINDOWS/TEMP/msoclip1/01/clip_image001.wmz"></V:SHAPE><![endif]--><IMG src="images/2.htm23.gif"       
v:shapes="_x0000_i1032" width="12" height="11"></SPAN><!--[if gte mso 9]><xml>      
 <o:OLEObject Type="Embed" ProgID="Equation.3" ShapeID="_x0000_i1032"      
  DrawAspect="Content" ObjectID="_1048959245">      
 </o:OLEObject>      
</xml><![endif]-->       
,Direction-&gt;-1]<SPAN style="mso-spacerun: yes">&nbsp;&nbsp;&nbsp;&nbsp;<br>  
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;  
</SPAN></font></font></b></SPAN><font face="宋体"><b><font size="4"><SPAN lang=EN-US        
style="mso-font-kerning: 0pt">x趋近于<SPAN        
style="mso-text-raise: -6.0pt"><!--[if gte vml 1]><V:SHAPE id=_x0000_i1033        
style="HEIGHT: 18.75pt; WIDTH: 15pt" o:ole="" type="#_x0000_t75"> <V:IMAGEDATA        
o:title=""        
src="file:///C:/WINDOWS/TEMP/msoclip1/01/clip_image012.wmz"></V:SHAPE><![endif]--><IMG src="images/2.htm24.gif"        
v:shapes="_x0000_i1033" width="20" height="25"></SPAN><!--[if gte mso 9]><xml>       
 <o:OLEObject Type="Embed" ProgID="Equation.3" ShapeID="_x0000_i1033"       
  DrawAspect="Content" ObjectID="_1048959246">       
 </o:OLEObject>       
</xml><![endif]-->        
时expr的极限</SPAN><SPAN lang=EN-US style="mso-spacerun: yes">&nbsp;</SPAN></font></b></font></P>          
<P align=left class=MsoNormal style="line-height: 200%"><b><SPAN         
style="mso-hansi-font-family: Times New Roman; mso-ascii-font-family: Times New Roman"><font face="宋体" size="4">例</font></SPAN><font face="宋体" size="4"><SPAN         
lang=EN-US>1</SPAN><SPAN         
style="mso-hansi-font-family: Times New Roman; mso-ascii-font-family: Times New Roman">求下列极限:</SPAN></font></b></P>        
<P align=left class=MsoNormal style="line-height: 200%"><b><SPAN         
style="mso-hansi-font-family: Times New Roman; mso-ascii-font-family: Times New Roman"><font face="宋体" size="4">(</font></SPAN><font face="宋体" size="4"><SPAN         
lang=EN-US>1</SPAN><SPAN         
style="mso-hansi-font-family: Times New Roman; mso-ascii-font-family: Times New Roman">)</SPAN><SPAN         
lang=EN-US><SPAN style="mso-text-raise: -10.0pt"><!--[if gte vml 1]><V:SHAPE         

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -