⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 content-2-3-1.htm

📁 实用的离散数学课件
💻 HTM
字号:
<html>
<head>
<title>Untitled Document</title>
<meta http-equiv="Content-Type" content="text/html; charset=gb2312">
<style type="text/css">
<!--
.unnamed1 {  font-size: 9pt; line-height: 15pt}
.unnamed2 {  font-size: 10pt; font-weight: bold}
-->
</style>
</head>

<body bgcolor="#FFFFFF" background="IMAGE/di.gif">



<table width="100%" border="0" cellspacing="0" cellpadding="0">
  <tr>
    <td> 
      <p style="line-height: 200%" align="center"  ><b>基 本 定 律</b> </p>
      <p style="line-height: 200%">谓词演算中永真蕴含基本定律的可以通过以下几种途径获得: </p>
      <p style="line-height: 200%"><br>
      <b>
        1.由永真命题公式获得:用谓词公式取代命题演算中的命题变元。</b>
         </p>
      <p style="line-height: 200%">&nbsp; 如:  
         <img src="image/renyi.gif" width="9" height="11">xA(x)<img src="image/hequ.gif" width="9" height="11"><img src="image/cunzai.gif" width="7" height="11" >yB(y)<img src="image/tuichu.gif" width="15" height="9"><img src="image/renyi.gif" width="9" height="11">xA(x)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;  
      P<img src="image/hequ.gif" width="9" height="11">Q<img src="image/tuichu.gif" width="15" height="9">P<br>
      &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img src="image/cunzai.gif" width="7" height="11" >xA(x)<img src="image/tuichu.gif" width="15" height="9"><img src="image/renyi.gif" width="9" height="11">xA(x)<img src="image/xiqu.gif" width="9" height="15"><img src="image/cunzai.gif" width="7" height="11" >yB(y)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;  
      P<img src="image/tuichu.gif" width="15" height="9">P<img src="image/xiqu.gif" width="9" height="15">Q
         </p>
      <p style="line-height: 200%"><b>2.每个永真式都是两个永真蕴含式。</b>
         </p>
      <p style="line-height: 200%">&nbsp; 如: <img src="image/fei.gif" width="10" height="5"><img src="image/renyi.gif" width="9" height="11">xA(x)<img src="image/tuichu.gif" width="15" height="9"><img src="image/cunzai.gif" width="7" height="11">x<img src="image/fei.gif" width="10" height="5">A(x)<br> 
      &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img src="image/cunzai.gif" width="7" height="11">x<img src="image/fei.gif" width="10" height="5">A(x)<img src="image/tuichu.gif" width="15" height="9"><img src="image/fei.gif" width="10" height="5"><img src="image/renyi.gif" width="9" height="11">xA(x) 
         </p>
      <p style="line-height: 200%"><b>3.利用有关量词的几个定律:</b> </p>
      <blockquote>
        <p style="line-height: 200%">
         <img src="image/renyi.gif" width="9" height="11">xA(x)<img src="image/xiqu.gif" width="9" height="15"><img src="image/renyi.gif" width="9" height="11">xB(x)<img src="image/tuichu.gif" width="15" height="9"><img src="image/renyi.gif" width="9" height="11">x(A(x)<img src="image/xiqu.gif" width="9" height="15">B(x))<br>
         <img src="image/cunzai.gif" width="7" height="11" >x(A(x)<img src="image/hequ.gif" width="9" height="11">B(x))<img src="image/tuichu.gif" width="15" height="9"><img src="image/cunzai.gif" width="7" height="11" >xA(x)<img src="image/hequ.gif" width="9" height="11"><img src="image/cunzai.gif" width="7" height="11" >xB(x)<br>
         <img src="image/cunzai.gif" width="7" height="11" >xA(x)<img src="image/yunhan.gif" width="15" height="9"><img src="image/renyi.gif" width="9" height="11">xB(x)<img src="image/tuichu.gif" width="15" height="9"><img src="image/renyi.gif" width="9" height="11">x(A(x)<img src="image/yunhan.gif" width="15" height="9">B(x))<br>
        <img src="image/renyi.gif" width="9" height="11">x(A(x)<img src="image/yunhan.gif" width="15" height="9">B(x))<img src="image/tuichu.gif" width="15" height="9"><img src="image/renyi.gif" width="9" height="11">xA(x)<img src="image/yunhan.gif" width="15" height="9"><img src="image/renyi.gif" width="9" height="11">xB(x) </p>
      </blockquote>
      <p style="line-height: 200%">&nbsp;&nbsp;&nbsp; 除了上述公式以外,在推理过程中还有4条规则,这4条腿这都是有条件的,这里的A<img src="image/tuichu.gif" width="15" height="9">B,不一定表示A<img src="image/yunhan.gif" width="15" height="9">B永真,只表示&quot;在一定条件下,A为真,B也为真&quot;. </p> 
      <p style="line-height: 200%"><b>4.谓词演算的推理规则:</b> </p>
      <ul msimagelist imagesrc="Image/gif/4.gif">
        <li>
            <p style="line-height: 200%"><b>规则 US (全称特定化规则): </b><img src="image/renyi.gif" width="9" height="11">xA(x)<img src="image/tuichu.gif" width="15" height="9">A(y)<br>
            <b>其中</b>,y为个体常元或变元,但是不在A(x)中出现过.</p>
        </li>
        <li>
            <p style="line-height: 200%"><b>规则 UG (全称一般化规则):</b> 
            A(y)<img src="image/tuichu.gif" width="15" height="9"><img src="image/renyi.gif" width="9" height="11">xA(x)<br> 
            <b>其中</b>,x为自由变元,且不在A(y)中出现.</p>
        </li>
        <li>
            <p style="line-height: 200%"><b>规则 ES (存在特定化规则):</b> 
            <img src="image/cunzai.gif" width="7" height="11" >xA(x)<img src="image/tuichu.gif" width="15" height="9">A(C)<br> 
            <b>其中,C</b>为个体常元,A(C)成立,且A(x)中不含x以外的自由变元.</p>
        </li>
        <li>
            <p style="line-height: 200%"><b>规则 EG (存在一般化规则):</b> 
            A(C)<img src="image/tuichu.gif" width="15" height="9"><img src="image/cunzai.gif" width="7" height="11" >xA(x)<br>
            <b>其中,C</b>为个体常元,A(C)成立,C不在A(x)中出现,且A(x)中不含x以外的自由变元.</p>
        </li>
      </ul>
      <p style="line-height: 200%"> </p>
      <p style="line-height: 200%"> </p>
      <p style="line-height: 200%"> </p>
      </td>
  </tr>
</table>
<p style="line-height: 150%">&nbsp;</p><p align="right"><b><a href="contentFrame-mulu.htm">&lt;&lt;back</a></b>
</body>
</html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -