⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 content-7-2.htm

📁 实用的离散数学课件
💻 HTM
📖 第 1 页 / 共 3 页
字号:
<!-- saved from url=(0022)http://internet.e-mail -->
<html>
<head>
<title>Untitled Document</title>
<meta http-equiv="Content-Type" content="text/html; charset=gb2312">
<style type="text/css">
<!--
.unnamed1 {  font-size: 9pt; line-height: 17pt}
.unnamed2 {  font-size: 10pt; font-weight: bold}
-->
</style>
</head>

<body bgcolor="#FFFFFF" background="IMAGE/Di.gif">


<table width="100%" border="0" cellspacing="0" cellpadding="0">
  <tr>
    <td width="100%"> 
      <p style="line-height: 150%" align="center"  ><a name="content-7-2"><br>
      </a><b><font size="5">图的矩阵表示</font></b>&nbsp;&nbsp;</p>
      <p style="line-height: 150%"  >&nbsp;&nbsp;&nbsp; 任给一个图G,G中的结点<img src="IMAGE/vi.gif" width="10" height="11">到<img src="IMAGE/vj.gif" width="12" height="13">是否可达,怎样找出从<img src="IMAGE/vi.gif" width="10" height="11">到<img src="IMAGE/vj.gif" width="12" height="13">的一条路径?有怎样找出一条最短路径?</p>          
      <p style="line-height: 150%"  >&nbsp;&nbsp;&nbsp;           
      要解决这些问题我们第一个想法就是将图形画出来,再在图形中找,但是当图形比较复杂时,就难免有疏漏,所以我们希望用计算机来帮助我们查找,这就要将图形存储到计算机中,也就要用到图形的矩阵表示.</p>        
      <p style="line-height: 150%"  >&nbsp;&nbsp;&nbsp; 本节介绍图的两种矩表示方法,它们分别是:</p>          
      <p style="line-height: 150%" align="center"  ><a href="#关联矩阵">关联矩阵</a>、<a href="#content-7-2-1">邻接矩阵</a></p>        
      <p style="line-height: 150%"  >两种表示方法具有内在的联系,可以互相转化。</p>        
      <p style="line-height: 150%"  >在此基础上介绍图的<a href="#content-7-2-2">可达性矩阵</a>及图的<font color="#0000FF"><a href="#最短路径问题">最短路径问题</a></font>.</p>       
      <p style="line-height: 150%">&nbsp;</p>       
      <p style="line-height: 150%"> </p>     
      <p style="line-height: 150%"> </p>     
      <p style="line-height: 150%"> </p>     
      <p style="line-height: 150%"> </p>     
      <p style="line-height: 150%" align="center"><a name="关联矩阵"><b><font size="5">关联矩阵</font></b></a></p>     
      <p style="line-height: 150%"><b><img border="0" src="Image/gif/bluered.gif" width="12" height="12">      
      定义:</b>设 G=&lt;V,E&gt; 是一个简单无向图,且为(n,m)图,A=<img border="0" src="Image/aij_nm.gif" width="44" height="17">为G的关联矩阵,其中:</p>          
      <div align="center">        
        <center>        
        <table border="0" width="46%" cellspacing="0" cellpadding="0" height="47">        
          <tr>        
            <td width="21%" rowspan="2" valign="middle" align="center" height="47"><img border="0" src="Image/aij.gif" width="15" height="13">=<font size="6"><b>{</b></font></td>        
            <td width="79%" height="23">0, 若<img src="IMAGE/vi.gif" width="10" height="11">与<img border="0" src="Image/ej.gif" width="12" height="13">不关联</td>          
          </tr>        
          <tr>        
            <td width="79%" height="24">1, 若<img src="IMAGE/vi.gif" width="10" height="11">与<img border="0" src="Image/ej.gif" width="12" height="13">关联</td>          
          </tr>        
        </table>        
        </center>        
      </div>        
      <p style="line-height: 150%">如:构造下图的关联矩阵</p>        
      <p style="line-height: 150%" align="center"><img border="0" src="Image/tu23.gif" width="198" height="153"></p>        
      <p style="line-height: 150%">则:</p>        
      <div align="center">        
        <table border="0" width="61%">        
          <tr>        
            <td width="18%" align="center">        
              <p align="right">A=</td>        
            <td width="82%" align="center">        
              <p align="left"><textarea rows="8" name="S1" cols="38"></textarea></td>        
          </tr>        
        </table>        
      </div>        
      <p style="line-height: 150%" align="left">&nbsp; 在该矩阵中有: ,&nbsp;</p>
        <p style="line-height: 150%" align="left">&nbsp; <img border="0" src="Image/gs1.gif" width="98" height="39">&nbsp;          
        <b>即,矩阵中第i行元素的和=第i个结点的度数.</b></p>       
      <p style="line-height: 150%" align="center"> </p>
      <p style="line-height: 150%"><b><img border="0" src="Image/gif/bluered.gif" width="12" height="12"> 
      定义:</b>设 G=&lt;V,E&gt; 是一个简单有向图,且为(n,m)图,A=<img border="0" src="Image/aij_nm.gif" width="44" height="17">为G的关联矩阵,其中:</p>         
      <div align="center">       
        <center>       
        <table border="0" width="46%" cellspacing="0" cellpadding="0" height="20">       
          <tr>       
            <td width="21%" rowspan="3" valign="middle" align="center" height="67"><img border="0" src="Image/aij.gif" width="15" height="13">=<b><font size="7">{</font></b></td>       
            <td width="79%" height="23">-1, 若<img src="IMAGE/vi.gif" width="10" height="11">为<img border="0" src="Image/ej.gif" width="12" height="13">的终点</td>         
          </tr>       
          <tr>       
            <td width="79%" height="22">0,&nbsp; 若<img src="IMAGE/vi.gif" width="10" height="11">与<img border="0" src="Image/ej.gif" width="12" height="13">不关联</td>         
          </tr>       
          <tr>       
            <td width="79%" height="1">1,&nbsp; 若<img src="IMAGE/vi.gif" width="10" height="11">为<img border="0" src="Image/ej.gif" width="12" height="13">的起点</td>         
          </tr>       
        </table>       
        </center>       
      </div>       
      <p style="line-height: 150%">如:构造下图的关联矩阵</p>       
      <p style="line-height: 150%" align="center"><img border="0" src="Image/tu24.gif" width="206" height="161"></p>       
      <p style="line-height: 150%">则:</p>       
      <div align="center">       
        <table border="0" width="61%">       
          <tr>       
            <td width="18%" align="center">       
              <p align="right">A=</td>       
            <td width="82%" align="center">       
              <p align="left"><textarea rows="8" name="S1" cols="38"></textarea></td>       
          </tr>       
        </table>       
      </div>       
      <p style="line-height: 150%">在该矩阵中有: ,&nbsp;</p>
        <p style="line-height: 150%" align="left">&nbsp; <img border="0" src="Image/gs2.gif" width="59" height="37">&nbsp;          
        即,<b>矩阵中第i行中&quot;1&quot;的个数=第i个结点的出度.</b></p>       
        <p style="line-height: 150%" align="left">&nbsp; <img border="0" src="Image/gs3.gif" width="79" height="39">&nbsp;          
        即,<b>矩阵中第i行中&quot;-1&quot;的个数=第i个结点的入度.</b></p>       
      <p style="line-height: 150%"> </p>
      <p style="line-height: 150%"> </p>
      <p style="line-height: 150%"> </p>
      <p style="line-height: 150%"> </p>
      <p style="line-height: 150%"> </p>
      <p style="line-height: 150%" align="center"  ><a name="content-7-2-1"></a><b><font size="5">邻接矩阵</font></b></p>
      <p style="line-height: 150%"><b><img border="0" src="Image/gif/bluered.gif" width="12" height="12"> 
      定义:</b>设图 G=&lt;V,E&gt;为(n,m)图,A=<img border="0" src="Image/aij_nn.gif" width="42" height="17">为G的邻接矩阵,其中:</p>         
      <div align="center">       
        <center>       
        <table border="0" width="46%" cellspacing="0" cellpadding="0" height="47">       
          <tr>       
            <td width="21%" rowspan="2" valign="middle" align="center" height="47"><img border="0" src="Image/aij.gif" width="15" height="13">=<font size="6"><b>{</b></font></td>       
            <td width="79%" height="23">0, 若<img src="IMAGE/vi.gif" width="10" height="11">与<img border="0" src="IMAGE/vj.gif" width="12" height="13">不相邻</td>         
          </tr>       
          <tr>       
            <td width="79%" height="24">1, 若<img src="IMAGE/vi.gif" width="10" height="11">与<img border="0" src="IMAGE/vj.gif" width="12" height="13">相邻</td>         
          </tr>       
        </table>       
        </center>       
      </div>       
      <p style="line-height: 150%">如:构造下图的邻接矩阵</p>       
      <p style="line-height: 150%" align="center"><img border="0" src="Image/tu25.gif" width="198" height="158"></p>       
      <p style="line-height: 150%">则:</p>       
      <div align="center">       
        <table border="0" width="61%">       
          <tr>       
            <td width="18%" align="center">       
              <p align="right">A=</td>       
            <td width="82%" align="center">       
              <p align="left"><textarea rows="8" name="S1" cols="38"></textarea></td>       
          </tr>       
        </table>       
      </div>       
      <p style="line-height: 150%">在该矩阵中有: &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</p>
        <p style="line-height: 150%" align="left">&nbsp; <img border="0" src="Image/gs4.gif" width="83" height="39">&nbsp;          
        <b>即:矩阵中所有&quot;1&quot;的个数=图的边数 m&nbsp;</b></p>         
        <p style="line-height: 150%" align="left">&nbsp; <img border="0" src="Image/gs6.gif" width="98" height="39">&nbsp;          
        <b>即:矩阵中第i行中&quot;1&quot;的个数=第i个结点的出度.</b></p>       
        <p style="line-height: 150%" align="left">&nbsp; <img border="0" src="Image/gs5.gif" width="101" height="37">&nbsp;          
        <b>即:矩阵中第i列中&quot;1&quot;的个数=第i个结点的入度.</b></p>       
        <p style="line-height: 150%" align="left"><b>&nbsp; 对角元素等于&quot;1&quot;,表示在该点上有自回路.</b></p>        
      <p style="line-height: 150%"> </p>                                    
      <p style="line-height: 150%">&nbsp;&nbsp;&nbsp;      
      对于上述矩阵我们做矩阵的乘法,设&nbsp;&nbsp;&nbsp;&nbsp;</p>                                          
      <blockquote>   
      <div align="left">   

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -