📄 compute_ess_dhmm_annealed_broken.m
字号:
function [loglik, exp_num_trans, exp_num_visits1, exp_num_emit, exp_num_visitsT] = ... compute_ess_dhmm(startprob, transmat, obsmat, data, dirichlet, temperature)%% Compute the Expected Sufficient Statistics for a discrete Hidden Markov Model.%% Outputs:% exp_num_trans(i,j) = sum_l sum_{t=2}^T Pr(X(t-1) = i, X(t) = j| Obs(l))% exp_num_visits1(i) = sum_l Pr(X(1)=i | Obs(l))% exp_num_visitsT(i) = sum_l Pr(X(T)=i | Obs(l)) % exp_num_emit(i,o) = sum_l sum_{t=1}^T Pr(X(t) = i, O(t)=o| Obs(l))% where Obs(l) = O_1 .. O_T for sequence l.if nargin < 6, temperature = 1; endb = 1/temperature;numex = length(data);[S O] = size(obsmat);exp_num_trans = zeros(S,S);exp_num_visits1 = zeros(S,1);exp_num_visitsT = zeros(S,1);exp_num_emit = dirichlet*ones(S,O);loglik = 0;for ex=1:numex obs = data{ex}; T = length(obs); obslik = mk_dhmm_obs_lik(obs, obsmat); [gamma, xi, current_ll] = forwards_backwards(startprob, transmat, obslik); % annealing if b ~= 1 for t=1:T gamma(:,t) = normalise(gamma(:,t) .^ b); if t < T xi(:,:,t) = normalise(xi(:,:,t) .^ b); end end end loglik = loglik + current_ll; exp_num_trans = exp_num_trans + sum(xi,3); exp_num_visits1 = exp_num_visits1 + gamma(:,1); exp_num_visitsT = exp_num_visitsT + gamma(:,T); % loop over whichever is shorter if T < O for t=1:T o = obs(t); exp_num_emit(:,o) = exp_num_emit(:,o) + gamma(:,t); end else for o=1:O ndx = find(obs==o); if ~isempty(ndx) exp_num_emit(:,o) = exp_num_emit(:,o) + sum(gamma(:, ndx), 2); end end endend
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -