📄 reinf3_5.m
字号:
%%%%%%%%%%% Reinforcement Problem 3.5 %%%%%%%%%%%% Discrete-Time Control Problems using %% MATLAB and the Control System Toolbox %% by J.H. Chow, D.K. Frederick, & N.W. Chbat %% Brooks/Cole Publishing Company %% September 2002 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ---- Stable zero-pole cancellation ----%cleardisp('Reinforcement Problem 3.5')Ts = 1;G1 = tf([2 -1],[1 0.5 0.125],Ts) % G1 in TF formdenG2 = conv([1 -0.5],[1 -0.25 0.125])G2 = tf([3 0.5],denG2,Ts) % G2 in TF formT = G2*G1 % series combination in TF formk = [0:Ts:10]; % discrete time sequencey = step(T,k); % step response figurestem(k,y,':','filled'); grid % plot responsetitle('Step response for Reinforcement Problem 3.5')xlabel('Discrete time k')%----- compute poles & zeros of G1, G2, & T ----[zG1,pG1,kG1] = zpkdata(G1,'v'); % zeros, poles, & gain of G1(z)[zG2,pG2,kG2] = zpkdata(G2,'v'); % zeros, poles, & gain of G2(z)[zT,pT,kT] = zpkdata(T,'v'); % zeros, poles, & gain of T(z)%---- display all zeros in polar form[magzG1,thetazG1] = xy2p(zG1)[magzG2,thetazG2] = xy2p(zG2)[magzT,thetazT] = xy2p(zT)%---- display all poles in polar form[magpG1,thetapG1] = xy2p(pG1)[magpG2,thetapG2] = xy2p(pG2)[magpT,thetapT] = xy2p(pT)%%%%%%%%%%
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -