📄 reinf3_17.m
字号:
%%%%%%%%%% Reinforcement Problem 3.17 %%%%%%%%%%%% Discrete-Time Control Problems using %% MATLAB and the Control System Toolbox %% by J.H. Chow, D.K. Frederick, & N.W. Chbat %% Brooks/Cole Publishing Company %% September 2002 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ---- Gain variation for second-order system ----%cleardisp('Reinforcement Problem 3.17')Ts = 1;%---- H(z) & denG are same for each caseH = 1; % unity feedbackdenG = conv([2 0.1],[1 -0.3]); % forward transfer functiondtime = 0:Ts:10;K = [0.1 0.3 0.6 1]; % gains for numG%-------- run 4 cases, plotting step responses as subplots ----figurefor ii = 1:4, kG = K(ii) G = tf(kG*[3 0.1],denG,Ts) % forward transfer function T = feedback(G,H) % closed-loop system y = step(T,dtime); % compute step response subplot(2,2,ii) stem(dtime,y,':','filled');grid % plot step response title(['Reinf 3.17: K = ',num2str(kG)])end%----- rerun the 4 cases, plotting CL poles in z plane -----figureucircle;gridhold onfor ii = 1:4, kG = K(ii); disp(['==== K = ',num2str(kG),' ====']) G = tf(kG*[3 0.1],denG,Ts); % forward transfer function T = feedback(G,H); % closed-loop system [zT,pT,kT] = zpkdata(T,'v') % CL zeros,poles,gain plot(real(pT),imag(pT),'*') title(['K = ',num2str(kG)])endhold offtitle('Pole-zero plot for Reinforcement Problem 3.17')xlabel('Real part of z')ylabel('Imaginary part of z')%%%%%%%%%%
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -