📄 ex2_4.m
字号:
%%%%%%%%%%%%%%%%%% Example 2.4 %%%%%%%%%%%%%%%%%%% Discrete-Time Control Problems using %% MATLAB and the Control System Toolbox %% by J.H. Chow, D.K. Frederick, & N.W. Chbat %% Brooks/Cole Publishing Company %% September 2002 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ---- Response due to individual poles ----%cleardisp('Example 2.4')numG = [2 -2.2 0.56]; % create G(z)denG = [1 -0.6728 0.0463 0.4860];[rGoz,pGoz,otherGoz] = residue(numG,[denG 0]) % residues, poles of G(z)/zdisp('*****>'), pausedisp('Poles in polar form')xy2p(pGoz); % show poles in polar formdisp('Residues in polar form')xy2p(rGoz); % show residues in polar formdtime = [0:30]; % sampled time data sequenceycmplx = cpole2k(pGoz(1),rGoz(1),dtime); % response due to complex polesyreal1 = rpole2k(pGoz(3),rGoz(3),dtime); % response due to 1st real poleyreal2 = rpole2k(pGoz(4),rGoz(4),dtime); % response due to 2nd real poleytot = ycmplx + yreal1 + yreal2; % ytot(k) is sum of the three%----- plot individual responses as separate plotsfiguresubplot(3,1,1) %----- Response due to complex poles ----- stem(dtime,ycmplx,'filled'),gridtitle('Ex. 2.4: Due to complex poles at z = 0.90exp(+/-j0.7854)')subplot(3,1,2) %----- Response due to real poles ----- stem(dtime,yreal1,'filled'),gridhold onstem(dtime,yreal2,'o')hold offtitle('Ex. 2.4: Real poles: z = -0.60 (solid); z = 0 (O)')subplot(3,1,3) %----- Complete response -----stem(dtime,ytot,'filled'),gridxlabel('k')title('Ex. 2.4: Complete response')%%%%%%%%%%
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -