⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 myapp_ex08a.c

📁 This network protcol stack,it is very strong and powerful!
💻 C
📖 第 1 页 / 共 3 页
字号:
/******************************************************************************
*   MyApp_Ex01.c  - Initialization and main loop. 
*   MyApp_Ex02.c  - Energy Detection Scan
*   MyApp_Ex03a.c - A PAN Coordinator is started 
*   MyApp_Ex03b.c - Device locates coordinator using Active Scan 
*   MyApp_Ex04a.c - Coordinator responds to an Associate request 
*   MyApp_Ex04b.c - Device Associates to the PAN coordinator
*   MyApp_Ex05a.c - Coordinator receives data from device
*   MyApp_Ex05b.c - Device sends direct data to the coordinator
*   MyApp_Ex06a.c - Coordinator sends indirect data to device 
*   MyApp_Ex06b.c - Device polls for data from the coordinator
*   MyApp_Ex07a.c - Coordinator starts a beaconed network
*   MyApp_Ex07b.c - Device receives data using automatic polling
* = MyApp_Ex08a.c - Coordinator uses security = This file ==
*   MyApp_Ex08b.c - Device uses security
*
* This demo application builds on MyApp_Ex07a.c which demonstrated how
* to start and use a beaconed network.
* 
* It it assumed that the demo application on the device side is Ex08b for this
* example. The Ex08b application has been configured to apply security to the
* data frames that it is sending.
*
* To send data frames using security the security PIB attributes must be set
* up prior to sending the data frames. To have security applied to the data 
* frames they must be sent with the SecurityEnable bit (bit 3) in the TxOptions
* parameter of the MCPS-DATA.request message. The coordinator has sufficient information
* about the device once it receives the association indication from the device.
* Hence, once the association indication is received the coordinator sets up
* the appropriate security PIB attributes. In this example the coordinator
* will communicate with the device in secured mode (2), using security level 6
* (ENC-MIC-64).
*
* To test the data transfer from the coordinator to the device, both should be
* connected to a PC with an RS232 terminal at 19200bps, 8N1. When sending an
* ASCII file (send as text) from the coordinators terminal, the file will be 
* printed to the terminal connected to the device. It resembles a bidirectional
* wireless RS232 cable replacement (though, without error checking and flow 
* control in this simple example).
*
* The steps required for applying security to the data frames are:
* 1) Set the relevant PIB attributes.
* 2) Set the SecurityEnable bit (bit 3) in the TxOptions of the MCPS-DATA.request.
*
******************************************************************************/

#include "802_15_4.h" /* Include everything related to the 802.15.4 interface*/
#include "Uart.h"     /* Defines the interface of the demo UART. */
#include "ToolBox.h"  /* Defines for memcpy, memcmp. */

/* Defines the channels to scan. Each bit represents one channel. Use
   0x07FFF800 to scan all 16 802.15.4 channels in the 2.4GHz band. */
#define SCAN_CHANNELS 0x07FFF800

/* Defines the beaconed network configuration. The values shown
   are suitable for transfer of 19200bps bidirectional UART data. */
#define BEACON_ORDER      1
#define SUPERFRAME_ORDER  1

/* Maximum number of outstanding packets */
#define MAX_PENDING_DATA_PACKETS 2

/* Default size of data payload in MCPS-Data.request.
   The length has no real meaning since MCPS-Data.requests
   are always sent in one-size buffers big enough to hold
   a maximum length data frame. */
#define DEFAULT_DATA_LENGTH 20

/* Forward declarations of helper functions */
uint8_t App_StartScan(uint8_t scanType);
void    App_HandleScanEdConfirm(nwkMessage_t *pMsg);
uint8_t App_StartCoordinator(void);
uint8_t App_HandleMlmeInput(nwkMessage_t *pMsg);
uint8_t App_SendAssociateResponse(nwkMessage_t *pMsgIn);
void    App_HandleMcpsInput(mcpsToNwkMessage_t *pMsgIn);
void    App_TransmitUartData(void);
uint8_t App_WaitMsg(nwkMessage_t *pMsg, uint8_t msgType);
void    App_InitSecurity(void);

/* The various states of the application state machine. */
enum {
  stateInit,
  stateScanEdStart,
  stateScanEdWaitConfirm,
  stateStartCoordinator,
  stateStartCoordinatorWaitConfirm,
  stateListen,
  stateTerminate
};

/* Error codes */
enum {
  errorNoError,
  errorWrongConfirm,
  errorNotSuccessful,
  errorNoMessage,
  errorAllocFailed,
  errorInvalidParameter,
  errorNoScanResults
};

/* The current state of the applications state machine */
uint8_t state;

/* The status parameter of the latest confirm message from the MLME */
uint8_t confirmStatus;

/* The current logical channel (frequency band) */
uint8_t logicalChannel;

/* These byte arrays stores an associated
   devices long and short addresses. */
uint8_t deviceShortAddress[2];
uint8_t deviceLongAddress[8];

/* We want the coordinators short address to be 0xCAFE. */
const uint8_t shortAddress[2] = { 0xFE, 0xCA };

/* PAN ID is 0xBEEF */ 
const uint8_t panId[2] = { 0xEF, 0xBE };

/* The security level */
const uint8_t securityLevel = 6;

/* The security mode */
const uint8_t securityMode = 2;

/* Data request packet for sending UART input to the coordinator */
nwkToMcpsMessage_t *pPacket;

/* The MSDU handle is a unique data packet identifier */
uint8_t msduHandle;

/* Number of pending data packets */
uint8_t numPendingPackets;

/* Application input queues */
anchor_t mMlmeNwkInputQueue;
anchor_t mMcpsNwkInputQueue;

/* Application Main Loop */
void main(void)
{ 
  /* Pointer for storing the messages from MLME */
  void *pMsgIn;
  /* Stores the error/success code returned by some functions. */
  uint8_t ret;
  /* return value of Mlme_Main() - not used yet */
  uint8_t macStatus;
  
  /* Initialize variables */
  state = stateInit;

  /* Prepare input queues.*/
  MSG_InitQueue(&mMlmeNwkInputQueue);
  MSG_InitQueue(&mMcpsNwkInputQueue);
  
  /* Execute the application state machine */    
  while(state < stateTerminate)
  {
    /* Preset return code to contain the success code */
    ret = errorNoError;
    
    /* Try to get a message from MLME */
    if(MSG_Pending(&mMlmeNwkInputQueue))
      pMsgIn = MSG_DeQueue(&mMlmeNwkInputQueue);
    else
      pMsgIn = NULL;
      
    switch(state)
    {
    case stateInit:
      /* Initialize the UART so that we can print out status messages */
      Uart_Init();
      /* Initialize the 802.15.4 stack */
      Init_802_15_4();
      /* Goto Energy Detection state. */
      state = stateScanEdStart;

      /* Print a welcome message to the UART */
      Uart_Print("The Myapp_Ex08a demo application is initialized and ready.\n\n");
      break;
      
    case stateScanEdStart:
      /* Start the Energy Detection scan, and goto wait for confirm state. */
      Uart_Print("Initiating the Energy Detection Scan\n");
      ret = App_StartScan(gScanModeED_c);
      if(ret == errorNoError)
      {
        state = stateScanEdWaitConfirm;
      }
      break;
      
    case stateScanEdWaitConfirm:
      /* Stay in this state until the MLME Scan confirm message arrives,
         and has been processed. Then goto Start Coordinator state. */
      ret = App_WaitMsg(pMsgIn, gNwkScanCnf_c);
      if(ret == errorNoError)
      {
        /* Process the ED scan confirm. The logical
           channel is selected by this function. */
        App_HandleScanEdConfirm(pMsgIn);
        state = stateStartCoordinator;
      }
      break;

    case stateStartCoordinator:
      /* Start up as a PAN Coordinator on the selected channel. */
      Uart_Print("\nStarting as PAN coordinator on channel 0x");
      Uart_PrintHex(&logicalChannel, 1, FALSE);
      Uart_Print("\n");
      ret = App_StartCoordinator();
      if(ret == errorNoError)
      {
        /* If the Start request was sent successfully to
           the MLME, then goto Wait for confirm state. */
        state = stateStartCoordinatorWaitConfirm;
      }
      break; 

    case stateStartCoordinatorWaitConfirm:
      /* Stay in this state until the Start confirm message
         arrives, and then goto the Listen state. */
      ret = App_WaitMsg(pMsgIn, gNwkStartCnf_c);
      if(ret == errorNoError)
      {
        Uart_Print("Started the coordinator with PAN ID 0x");
        Uart_PrintHex((uint8_t *)panId, 2, 0);
        Uart_Print(", and short address 0x");
        Uart_PrintHex((uint8_t *)shortAddress, 2, 0);
        Uart_Print(".\n\nReady to send and receive data over the UART.\n\n");
        state = stateListen;
      }
      break; 
      
    case stateListen:
      /* Stay in this state forever. Handles associate, disassociate etc. */
      ret = App_HandleMlmeInput(pMsgIn);
      break;
    }
    
    if(pMsgIn)
    {
      /* Messages from the MLME must always be freed. */
      MSG_Free(pMsgIn);
    }

    /* If we are associated then check MCPS queue and UART data buffer. */
    if(state == stateListen)
    {
      /* Check for input from MCPS (data related)*/
      if(MSG_Pending(&mMcpsNwkInputQueue))
      {
        /* Get the message from MCPS */
        pMsgIn = MSG_DeQueue(&mMcpsNwkInputQueue);
        /* Process the message */
        App_HandleMcpsInput(pMsgIn);
        /* Messages from the MCPS must always be freed. */
        MSG_Free(pMsgIn);
      }

      /* Check if the UART buffer has data to be sent to the device. */
      App_TransmitUartData();
    }
    
    /* Call the MAC main function continuously. */
    macStatus = Mlme_Main();
  }
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -