📄 linear304.m
字号:
%% Linear Fit of Nonlinear Problem
% A linear neuron is trained to find the minimum sum-squared error linear fit to
% a nonlinear input/output problem.
%
% Copyright 1992-2002 The MathWorks, Inc.
% $Revision: 1.16 $ $Date: 2002/03/29 19:36:17 $
%%
% P defines four 1-element input patterns (column vectors). T defines
% associated 1-element targets (column vectors). Note that the relationship
% between values in P and in T is nonlinear. I.e. No W and B exist such that
% P*W+B = T for all of four sets of P and T values above.
P = [+1.0 +1.5 +3.0 -1.2];
T = [+0.5 +1.1 +3.0 -1.0];
%%
% ERRSURF calculates errors for a neuron with a range of possible weight and
% bias values. PLOTES plots this error surface with a contour plot underneath.
%
% The best weight and bias values are those that result in the lowest point on
% the error surface. Note that because a perfect linear fit is not possible,
% the minimum has an error greater than 0.
w_range =-2:0.4:2; b_range = -2:0.4:2;
ES = errsurf(P,T,w_range,b_range,'purelin');
plotes(w_range,b_range,ES);
%%
% MAXLINLR finds the fastest stable learning rate for training a linear network.
% NEWLIN creates a linear neuron. NEWLIN takes these arguments: 1) Rx2 matrix
% of min and max values for R input elements, 2) Number of elements in the
% output vector, 3) Input delay vector, and 4) Learning rate.
maxlr = maxlinlr(P,'bias');
net = newlin([-2 2],1,[0],maxlr);
%%
% Override the default training parameters by setting the maximum number of
% epochs. This ensures that training will stop.
net.trainParam.epochs = 15;
%%
% To show the path of the training we will train only one epoch at a time and
% call PLOTEP every epoch (code not shown here). The plot shows a history of
% the training. Each dot represents an epoch and the blue lines show each
% change made by the learning rule (Widrow-Hoff by default).
% [net,tr] = train(net,P,T);
net.trainParam.epochs = 1;
net.trainParam.show = NaN;
h=plotep(net.IW{1},net.b{1},mse(T-sim(net,P)));
[net,tr] = train(net,P,T);
r = tr;
epoch = 1;
while epoch < 15
epoch = epoch+1;
[net,tr] = train(net,P,T);
if length(tr.epoch) > 1
h = plotep(net.IW{1,1},net.b{1},tr.perf(2),h);
r.epoch=[r.epoch epoch];
r.perf=[r.perf tr.perf(2)];
r.vperf=[r.vperf NaN];
r.tperf=[r.tperf NaN];
else
break
end
end
tr=r;
%%
% The train function outputs the trained network and a history of the training
% performance (tr). Here the errors are plotted with respect to training
% epochs.
%
% Note that the error never reaches 0. This problem is nonlinear and therefore
% a zero error linear solution is not possible.
plotperf(tr,net.trainParam.goal);
%%
% Now use SIM to test the associator with one of the original inputs, -1.2, and
% see if it returns the target, 1.0.
%
% The result is not very close to 0.5! This is because the network is the best
% linear fit to a nonlinear problem.
p = -1.2;
a = sim(net, p)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -