📄 kclassify.m
字号:
function groups = kclassify(samples, means)% KCLASSIFY Classification based on k-means (no dependence on dimension)%% Samples: A matrix with rows containing sample vectors% Means: A matrix with C rows, each of which is a group mean. % First, compute the distances of each sample from each of the% means. numPixels = length(samples(:,1)); numGroups = size(means,1); groups = zeros(numPixels,1); tic for i=1:numPixels % #1 %[jive, groups(i)] = min(distances(samples(i,:), means)); % #2 11s for K=1000 vm = repmat(samples(i,:), numGroups, 1); dists = sum((vm - means).^2, 2); % #3 %dists = zeros(numGroups,1); %for j=1:numGroups % dists(j) = sum((samples(i,:)-means(j,:)).^2); %end % #4 % str='dists=[ ';% for j=1:length(means(:,1))% str = strcat(str,sprintf('sum((samples(%d,:)-means(%d,:)).^2), ',i,j));% end% str = strcat(str,'];');% eval(str); [dontcare, groups(i)] = min(dists); end toc
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -