📄 statscluster.m
字号:
function [sigma, mu] = statsCluster(pixels, mask)% STATSCLUSTER - calculates the mean and STD of the given cluster%% [SIGMA, MU] = STATSCLUSTER(PIXELS,MASK)%% Input:% PIXELS - MxNx3 image, where each pixel is a point in a % perceptually unif color space (e.g. LAB). note that this image% should have been masked (i.e. contain only those pixels in this cluster)% MASK - MxN binary image that's a mask for this cluster%% Output: % SIGMA - standard deviation of this cluster. the STD calculated is% the std of distance from the mean % MU - 1x3 vector containing the mean L, A, and B values of this cluster%% Jeff Walters & Angi Chau% Feb 2003% first find the mean of the cluster (and we have to make sure to ignore% all the pixels not in this cluster)indices = find(mask~=0);Lonly = pixels(:,:,1);Aonly = pixels(:,:,2);Bonly = pixels(:,:,3);mu = [mean(Lonly(indices)) mean(Aonly(indices)) mean(Bonly(indices))];%if (numPixels > 0) sd = sqdist(pixels, mu).*mask; %sigma2 = sum(sigma2(1:end)); % sum of all distances %sigma = sqrt(sigma2/numPixels); % normalize & sqrt to get std % now we want to find the std of the distances sigma=std(sqrt(sd(indices))); %sigma=std(sd(1:end));%end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -