📄 calcexc.c
字号:
/*
ITU-T G.729 Annex B ANSI-C Source Code
Version 1.3 Last modified: August 1997
Copyright (c) 1996, France Telecom, Rockwell International,
Universite de Sherbrooke.
All rights reserved.
*/
/* Computation of Comfort Noise excitation */
#include <stdio.h>
#include <stdlib.h>
#include "typedef.h"
#include "ld8k.h"
#include "dtx.h"
#include "basic_op.h"
#include "oper_32b.h"
/* Local functions */
static Word16 Gauss(Word16 *seed);
static Word16 Sqrt( Word32 Num);
/*-----------------------------------------------------------*
* procedure Calc_exc_rand *
* ~~~~~~~~~~~~~ *
* Computes comfort noise excitation *
* for SID and not-transmitted frames *
*-----------------------------------------------------------*/
void Calc_exc_rand(
Word16 cur_gain, /* (i) : target sample gain */
Word16 *exc, /* (i/o) : excitation array */
Word16 *seed, /* (i) : current Vad decision */
Flag flag_cod /* (i) : encoder/decoder flag */
)
{
Word16 i, j, i_subfr;
Word16 temp1, temp2;
Word16 pos[4];
Word16 sign[4];
Word16 t0, frac;
Word16 *cur_exc;
Word16 g, Gp, Gp2;
Word16 excg[L_SUBFR], excs[L_SUBFR];
Word32 L_acc, L_ener, L_k;
Word16 max, hi, lo, inter_exc;
Word16 sh;
Word16 x1, x2;
if(cur_gain == 0) {
for(i=0; i<L_FRAME; i++) {
exc[i] = 0;
}
Gp = 0;
t0 = add(L_SUBFR,1);
for (i_subfr = 0; i_subfr < L_FRAME; i_subfr += L_SUBFR) {
if(flag_cod != FLAG_DEC) update_exc_err(Gp, t0);
}
return;
}
/* Loop on subframes */
cur_exc = exc;
for (i_subfr = 0; i_subfr < L_FRAME; i_subfr += L_SUBFR) {
/* generate random adaptive codebook & fixed codebook parameters */
/*****************************************************************/
temp1 = Random(seed);
frac = sub((temp1 & (Word16)0x0003), 1);
if(sub(frac, 2) == 0) frac = 0;
temp1 = shr(temp1, 2);
t0 = add((temp1 & (Word16)0x003F), 40);
temp1 = shr(temp1, 6);
temp2 = temp1 & (Word16)0x0007;
pos[0] = add(shl(temp2, 2), temp2); /* 5 * temp2 */
temp1 = shr(temp1, 3);
sign[0] = temp1 & (Word16)0x0001;
temp1 = shr(temp1, 1);
temp2 = temp1 & (Word16)0x0007;
temp2 = add(shl(temp2, 2), temp2);
pos[1] = add(temp2, 1); /* 5 * x + 1 */
temp1 = shr(temp1, 3);
sign[1] = temp1 & (Word16)0x0001;
temp1 = Random(seed);
temp2 = temp1 & (Word16)0x0007;
temp2 = add(shl(temp2, 2), temp2);
pos[2] = add(temp2, 2); /* 5 * x + 2 */
temp1 = shr(temp1, 3);
sign[2] = temp1 & (Word16)0x0001;
temp1 = shr(temp1, 1);
temp2 = temp1 & (Word16)0x000F;
pos[3] = add((temp2 & (Word16)1), 3); /* j+3*/
temp2 = (shr(temp2, 1)) & (Word16)7;
temp2 = add(shl(temp2, 2), temp2); /* 5i */
pos[3] = add(pos[3], temp2);
temp1 = shr(temp1, 4);
sign[3] = temp1 & (Word16)0x0001;
Gp = Random(seed) & (Word16)0x1FFF; /* < 0.5 Q14 */
Gp2 = shl(Gp, 1); /* Q15 */
/* Generate gaussian excitation */
/********************************/
L_acc = 0L;
for(i=0; i<L_SUBFR; i++) {
temp1 = Gauss(seed);
L_acc = L_mac(L_acc, temp1, temp1);
excg[i] = temp1;
}
/*
Compute fact = alpha x cur_gain * sqrt(L_SUBFR / Eg)
with Eg = SUM(i=0->39) excg[i]^2
and alpha = 0.5
alpha x sqrt(L_SUBFR)/2 = 1 + FRAC1
*/
L_acc = Inv_sqrt(L_shr(L_acc,1)); /* Q30 */
L_Extract(L_acc, &hi, &lo);
/* cur_gain = cur_gainR << 3 */
temp1 = mult_r(cur_gain, FRAC1);
temp1 = add(cur_gain, temp1);
/* <=> alpha x cur_gainR x 2^2 x sqrt(L_SUBFR) */
L_acc = Mpy_32_16(hi, lo, temp1); /* fact << 17 */
sh = norm_l(L_acc);
temp1 = extract_h(L_shl(L_acc, sh)); /* fact << (sh+1) */
sh = sub(sh, 14);
for(i=0; i<L_SUBFR; i++) {
temp2 = mult_r(excg[i], temp1);
temp2 = shr_r(temp2, sh); /* shl if sh < 0 */
excg[i] = temp2;
}
/* generate random adaptive excitation */
/****************************************/
Pred_lt_3(cur_exc, t0, frac, L_SUBFR);
/* compute adaptive + gaussian exc -> cur_exc */
/**********************************************/
max = 0;
for(i=0; i<L_SUBFR; i++) {
temp1 = mult_r(cur_exc[i], Gp2);
temp1 = add(temp1, excg[i]); /* may overflow */
cur_exc[i] = temp1;
temp1 = abs_s(temp1);
if(sub(temp1,max) > 0) max = temp1;
}
/* rescale cur_exc -> excs */
if(max == 0) sh = 0;
else {
sh = sub(3, norm_s(max));
if(sh <= 0) sh = 0;
}
for(i=0; i<L_SUBFR; i++) {
excs[i] = shr(cur_exc[i], sh);
}
/* Compute fixed code gain */
/***************************/
/**********************************************************/
/*** Solve EQ(X) = 4 X**2 + 2 b X + c */
/**********************************************************/
L_ener = 0L;
for(i=0; i<L_SUBFR; i++) {
L_ener = L_mac(L_ener, excs[i], excs[i]);
} /* ener x 2^(-2sh + 1) */
/* inter_exc = b >> sh */
inter_exc = 0;
for(i=0; i<4; i++) {
j = pos[i];
if(sign[i] == 0) {
inter_exc = sub(inter_exc, excs[j]);
}
else {
inter_exc = add(inter_exc, excs[j]);
}
}
/* Compute k = cur_gainR x cur_gainR x L_SUBFR */
L_acc = L_mult(cur_gain, L_SUBFR);
L_acc = L_shr(L_acc, 6);
temp1 = extract_l(L_acc); /* cur_gainR x L_SUBFR x 2^(-2) */
L_k = L_mult(cur_gain, temp1); /* k << 2 */
temp1 = add(1, shl(sh,1));
L_acc = L_shr(L_k, temp1); /* k x 2^(-2sh+1) */
/* Compute delta = b^2 - 4 c */
L_acc = L_sub(L_acc, L_ener); /* - 4 c x 2^(-2sh-1) */
inter_exc = shr(inter_exc, 1);
L_acc = L_mac(L_acc, inter_exc, inter_exc); /* 2^(-2sh-1) */
sh = add(sh, 1);
/* inter_exc = b x 2^(-sh) */
/* L_acc = delta x 2^(-2sh+1) */
if(L_acc < 0) {
/* adaptive excitation = 0 */
Copy(excg, cur_exc, L_SUBFR);
temp1 = abs_s(excg[(int)pos[0]]) | abs_s(excg[(int)pos[1]]);
temp2 = abs_s(excg[(int)pos[2]]) | abs_s(excg[(int)pos[3]]);
temp1 = temp1 | temp2;
sh = ((temp1 & (Word16)0x4000) == 0) ? (Word16)1 : (Word16)2;
inter_exc = 0;
for(i=0; i<4; i++) {
temp1 = shr(excg[(int)pos[i]], sh);
if(sign[i] == 0) {
inter_exc = sub(inter_exc, temp1);
}
else {
inter_exc = add(inter_exc, temp1);
}
} /* inter_exc = b >> sh */
L_Extract(L_k, &hi, &lo);
L_acc = Mpy_32_16(hi, lo, K0); /* k x (1- alpha^2) << 2 */
temp1 = sub(shl(sh, 1), 1); /* temp1 > 0 */
L_acc = L_shr(L_acc, temp1); /* 4k x (1 - alpha^2) << (-2sh+1) */
L_acc = L_mac(L_acc, inter_exc, inter_exc); /* delta << (-2sh+1) */
Gp = 0;
}
temp2 = Sqrt(L_acc); /* >> sh */
x1 = sub(temp2, inter_exc);
x2 = negate(add(inter_exc, temp2)); /* x 2^(-sh+2) */
if(sub(abs_s(x2),abs_s(x1)) < 0) x1 = x2;
temp1 = sub(2, sh);
g = shr_r(x1, temp1); /* shl if temp1 < 0 */
if(g >= 0) {
if(sub(g, G_MAX) > 0) g = G_MAX;
}
else {
if(add(g, G_MAX) < 0) g = negate(G_MAX);
}
/* Update cur_exc with ACELP excitation */
for(i=0; i<4; i++) {
j = pos[i];
if(sign[i] != 0) {
cur_exc[j] = add(cur_exc[j], g);
}
else {
cur_exc[j] = sub(cur_exc[j], g);
}
}
if(flag_cod != FLAG_DEC) update_exc_err(Gp, t0);
cur_exc += L_SUBFR;
} /* end of loop on subframes */
return;
}
/*-----------------------------------------------------------*
* Local procedures *
* ~~~~~~~~~~~~~~~~ *
*-----------------------------------------------------------*/
/* Gaussian generation */
/***********************/
static Word16 Gauss(Word16 *seed)
{
/**** Xi = uniform v.a. in [-32768, 32767] ****/
/**** Z = SUM(i=1->12) Xi / 2 x 32768 is N(0,1) ****/
/**** output : Z x 512 < 2^12 ****/
Word16 i;
Word16 temp;
Word32 L_acc;
L_acc = 0L;
for(i=0; i<12; i++) {
L_acc = L_add(L_acc, L_deposit_l(Random(seed)));
}
L_acc = L_shr(L_acc, 7);
temp = extract_l(L_acc);
return(temp);
}
/* Square root function : returns sqrt(Num/2) */
/**********************************************/
static Word16 Sqrt( Word32 Num )
{
Word16 i ;
Word16 Rez = (Word16) 0 ;
Word16 Exp = (Word16) 0x4000 ;
Word32 Acc, L_temp;
for ( i = 0 ; i < 14 ; i ++ ) {
Acc = L_mult(add(Rez, Exp), add(Rez, Exp) );
L_temp = L_sub(Num, Acc);
if(L_temp >= 0L) Rez = add( Rez, Exp);
Exp = shr( Exp, (Word16) 1 ) ;
}
return Rez ;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -