📄 macroblock.c
字号:
{
eep = &(dataPart->ee_cabac);
eep->Elow = eep->ElowS;
eep->Erange = eep->ErangeS;
eep->Ebuffer = eep->EbufferS;
eep->Ebits_to_go = eep->Ebits_to_goS;
eep->Ebits_to_follow = eep->Ebits_to_followS;
eep->Ecodestrm = eep->EcodestrmS;
eep->Ecodestrm_len = eep->Ecodestrm_lenS;
}
}
}
if(*end_of_slice == TRUE && skip == TRUE) //! TO 4.11.2001 Skip MBs at the end of this slice
{
//! only for Slice Mode 2 or 3
// If we still have to write the skip, let's do it!
if(img->cod_counter && *recode_macroblock == TRUE) //! MB that did not fit in this slice
{
// If recoding is true and we have had skip,
// we have to reduce the counter in case of recoding
img->cod_counter--;
if(img->cod_counter)
{
if(img->type == B_IMG)
dataPart = &(currSlice->partArr[partMap[SE_BFRAME]]);
else
dataPart = &(currSlice->partArr[partMap[SE_MBTYPE]]);
currSE->value1 = img->cod_counter;
currSE->mapping = n_linfo2;
currSE->type = SE_MBTYPE;
dataPart->writeSyntaxElement( currSE, dataPart);
rlc_bits=currSE->len;
currMB->bitcounter[BITS_MB_MODE]+=rlc_bits;
img->cod_counter = 0;
}
}
else //! MB that did not fit in this slice anymore is not a Skip MB
{
for (i=0; i<currSlice->max_part_nr; i++)
{
dataPart = &(currSlice->partArr[i]);
currStream = dataPart->bitstream;
// update the bitstream
currStream->bits_to_go = currStream->bits_to_go_skip;
currStream->byte_pos = currStream->byte_pos_skip;
currStream->byte_buf = currStream->byte_buf_skip;
}
// update the statistics
img->cod_counter = 0;
skip = FALSE;
}
}
//! TO 4.11.2001 Skip MBs at the end of this slice for Slice Mode 0 or 1
if(*end_of_slice == TRUE && img->cod_counter && !use_bitstream_backing)
{
if(img->type == B_IMG)
dataPart = &(currSlice->partArr[partMap[SE_BFRAME]]);
else
dataPart = &(currSlice->partArr[partMap[SE_MBTYPE]]);
currSE->value1 = img->cod_counter;
currSE->mapping = n_linfo2;
currSE->type = SE_MBTYPE;
dataPart->writeSyntaxElement( currSE, dataPart);
rlc_bits=currSE->len;
currMB->bitcounter[BITS_MB_MODE]+=rlc_bits;
img->cod_counter = 0;
}
}
/*!
*****************************************************************************
*
* \brief
* For Slice Mode 2: Checks if one partition of one slice exceeds the
* allowed size
*
* \return
* FALSE if all Partitions of this slice are smaller than the allowed size
* TRUE is at least one Partition exceeds the limit
*
* \para Parameters
*
*
*
* \para Side effects
* none
*
* \para Other Notes
*
*
*
* \date
* 4 November 2001
*
* \author
* Tobias Oelbaum drehvial@gmx.net
*****************************************************************************/
int slice_too_big(int rlc_bits)
{
Slice *currSlice = img->currentSlice;
DataPartition *dataPart;
Bitstream *currStream;
EncodingEnvironmentPtr eep;
int i;
int size_in_bytes;
//! UVLC
if (input->symbol_mode == UVLC)
{
for (i=0; i<currSlice->max_part_nr; i++)
{
dataPart = &(currSlice->partArr[i]);
currStream = dataPart->bitstream;
size_in_bytes = currStream->byte_pos;
if (currStream->bits_to_go < 8)
size_in_bytes++;
if (currStream->bits_to_go < rlc_bits)
size_in_bytes++;
if(size_in_bytes > input->slice_argument)
return TRUE;
}
}
//! CABAC
if (input->symbol_mode ==CABAC)
{
for (i=0; i<currSlice->max_part_nr; i++)
{
dataPart= &(currSlice->partArr[i]);
eep = &(dataPart->ee_cabac);
if( arienco_bits_written(eep) > (input->slice_argument*8))
return TRUE;
}
}
return FALSE;
}
/*!
************************************************************************
* \brief
* Checks the availability of neighboring macroblocks of
* the current macroblock for prediction and context determination;
* marks the unavailable MBs for intra prediction in the
* ipredmode-array by -1. Only neighboring MBs in the causal
* past of the current MB are checked.
************************************************************************
*/
void CheckAvailabilityOfNeighbors()
{
int i,j;
const int mb_width = img->width/MB_BLOCK_SIZE;
const int mb_nr = img->current_mb_nr;
Macroblock *currMB = &img->mb_data[mb_nr];
// mark all neighbors as unavailable
for (i=0; i<3; i++)
for (j=0; j<3; j++)
img->mb_data[mb_nr].mb_available[i][j]=NULL;
img->mb_data[mb_nr].mb_available[1][1]=currMB; // current MB
// Check MB to the left
if(img->pix_x >= MB_BLOCK_SIZE)
{
int remove_prediction = currMB->slice_nr != img->mb_data[mb_nr-1].slice_nr;
// upper blocks
if (remove_prediction || (input->UseConstrainedIntraPred && img->intra_block[mb_nr-1][1]==0))
{
img->ipredmode[img->block_x][img->block_y+1] = -1;
img->ipredmode[img->block_x][img->block_y+2] = -1;
}
// lower blocks
if (remove_prediction || (input->UseConstrainedIntraPred && img->intra_block[mb_nr-1][3]==0))
{
img->ipredmode[img->block_x][img->block_y+3] = -1;
img->ipredmode[img->block_x][img->block_y+4] = -1;
}
if (!remove_prediction)
{
currMB->mb_available[1][0]=&(img->mb_data[mb_nr-1]);
}
}
// Check MB above
if(img->pix_y >= MB_BLOCK_SIZE)
{
int remove_prediction = currMB->slice_nr != img->mb_data[mb_nr-mb_width].slice_nr;
// upper blocks
if (remove_prediction || (input->UseConstrainedIntraPred && img->intra_block[mb_nr-mb_width][2]==0))
{
img->ipredmode[img->block_x+1][img->block_y] = -1;
img->ipredmode[img->block_x+2][img->block_y] = -1;
}
// lower blocks
if (remove_prediction || (input->UseConstrainedIntraPred && img->intra_block[mb_nr-mb_width][3]==0))
{
img->ipredmode[img->block_x+3][img->block_y] = -1;
img->ipredmode[img->block_x+4][img->block_y] = -1;
}
if (!remove_prediction)
{
currMB->mb_available[0][1]=&(img->mb_data[mb_nr-mb_width]);
}
}
// Check MB left above
if(img->pix_x >= MB_BLOCK_SIZE && img->pix_y >= MB_BLOCK_SIZE )
{
if(currMB->slice_nr == img->mb_data[mb_nr-mb_width-1].slice_nr)
img->mb_data[mb_nr].mb_available[0][0]=&(img->mb_data[mb_nr-mb_width-1]);
}
// Check MB right above
if(img->pix_y >= MB_BLOCK_SIZE && img->pix_x < (img->width-MB_BLOCK_SIZE ))
{
if(currMB->slice_nr == img->mb_data[mb_nr-mb_width+1].slice_nr)
// currMB->mb_available[0][1]=&(img->mb_data[mb_nr-mb_width+1]);
currMB->mb_available[0][2]=&(img->mb_data[mb_nr-mb_width+1]);
}
}
/*!
************************************************************************
* \brief
* Predict one component of a 4x4 Luma block
************************************************************************
*/
void
OneComponentLumaPrediction4x4 (int* mpred, // --> array of prediction values (row by row)
int pic_pix_x, // <-- absolute horizontal coordinate of 4x4 block
int pic_pix_y, // <-- absolute vertical coordinate of 4x4 block
int* mv, // <-- motion vector
int ref) // <-- reference frame (0.. / -1:backward)
{
pel_t** ref_pic = (ref==-1 ? mref_P : mref [ref]);
int mvshift = (input->mv_res ? 3 : 2);
int pix_add = (1 << mvshift);
int j0 = (pic_pix_y << mvshift) + mv[1], j1=j0+pix_add, j2=j1+pix_add, j3=j2+pix_add;
int i0 = (pic_pix_x << mvshift) + mv[0], i1=i0+pix_add, i2=i1+pix_add, i3=i2+pix_add;
pel_t (*get_pel) (pel_t**, int, int) = (input->mv_res ? UMVPelY_18 : UMVPelY_14);
*mpred++ = get_pel (ref_pic, j0, i0);
*mpred++ = get_pel (ref_pic, j0, i1);
*mpred++ = get_pel (ref_pic, j0, i2);
*mpred++ = get_pel (ref_pic, j0, i3);
*mpred++ = get_pel (ref_pic, j1, i0);
*mpred++ = get_pel (ref_pic, j1, i1);
*mpred++ = get_pel (ref_pic, j1, i2);
*mpred++ = get_pel (ref_pic, j1, i3);
*mpred++ = get_pel (ref_pic, j2, i0);
*mpred++ = get_pel (ref_pic, j2, i1);
*mpred++ = get_pel (ref_pic, j2, i2);
*mpred++ = get_pel (ref_pic, j2, i3);
*mpred++ = get_pel (ref_pic, j3, i0);
*mpred++ = get_pel (ref_pic, j3, i1);
*mpred++ = get_pel (ref_pic, j3, i2);
*mpred++ = get_pel (ref_pic, j3, i3);
}
/*!
************************************************************************
* \brief
* Predict one 4x4 Luma block
************************************************************************
*/
void
LumaPrediction4x4 (int block_x, // <-- relative horizontal block coordinate of 4x4 block
int block_y, // <-- relative vertical block coordinate of 4x4 block
int fw_mode, // <-- forward prediction mode (1-7, 0=DIRECT if bw_mode=0)
int bw_mode, // <-- backward prediction mode (1-7, 0=DIRECT if fw_mode=0)
int fw_ref) // <-- reference frame for forward prediction (-1: Intra4x4 pred. with fw_mode)
{
static int fw_pred[16];
static int bw_pred[16];
int i, j;
int block_x4 = block_x+4;
int block_y4 = block_y+4;
int pic_pix_x = img->pix_x + block_x;
int pic_pix_y = img->pix_y + block_y;
int bx = block_x >> 2;
int by = block_y >> 2;
int* fpred = fw_pred;
int* bpred = bw_pred;
int direct = (fw_mode == 0 && bw_mode == 0);
if (fw_mode || direct)
{
OneComponentLumaPrediction4x4 (fw_pred, pic_pix_x, pic_pix_y, img->all_mv [bx][by][fw_ref][fw_mode], fw_ref);
}
if (bw_mode || direct)
{
OneComponentLumaPrediction4x4 (bw_pred, pic_pix_x, pic_pix_y, img->all_bmv[bx][by][ 0][bw_mode], -1);
}
if (direct || (fw_mode && bw_mode))
{
for (j=block_y; j<block_y4; j++)
for (i=block_x; i<block_x4; i++) img->mpr[i][j] = (int)((*fpred++ + *bpred++) / 2.0 + 0.5);
}
else if (fw_mode)
{
for (j=block_y; j<block_y4; j++)
for (i=block_x; i<block_x4; i++) img->mpr[i][j] = *fpred++;
}
else
{
for (j=block_y; j<block_y4; j++)
for (i=block_x; i<block_x4; i++) img->mpr[i][j] = *bpred++;
}
}
/*!
************************************************************************
* \brief
* Residual Coding of an 8x8 Luma block (not for intra)
************************************************************************
*/
int // ==> coefficient cost
LumaResidualCoding8x8 (int *cbp, // --> cbp (updated according to processed 8x8 luminance block)
int *cbp_blk, // --> block cbp (updated according to processed 8x8 luminance block)
int block8x8, // <-- block number of 8x8 block
int fw_mode, // <-- forward prediction mode (1-7, 0=DIRECT)
int bw_mode, // <-- backward prediction mode (1-7, 0=DIRECT)
int fw_refframe) // <-- reference frame for forward prediction
{
int block_y, block_x, pic_pix_y, pic_pix_x, i, j, nonzero, cbp_blk_mask;
int coeff_cost = 0;
int mb_y = (block8x8 / 2) << 3;
int mb_x = (block8x8 % 2) << 3;
int cbp_mask = 1 << block8x8;
//===== loop over 4x4 blocks =====
for (block_y=mb_y; block_y<mb_y+8; block_y+=4)
{
pic_pix_y = img->pix_y + block_y;
for (block_x=mb_x; block_x<mb_x+8; block_x+=4)
{
pic_pix_x = img->pix_x + block_x;
cbp_blk_mask = (block_x>>2) + block_y;
//===== prediction of 4x4 block =====
LumaPrediction4x4 (block_x, block_y, fw_mode, bw_mode, fw_refframe);
//===== get displaced frame difference ======
for (j=0; j<4; j++)
for (i=0; i<4; i++)
{
img->m7[i][j] = imgY_org[pic_pix_y+j][pic_pix_x+i] - img->mpr[i+block_x][j+block_y];
}
//===== DCT, Quantization, inverse Quantization, IDCT, Reconstruction =====
if (img->types!=SP_IMG) nonzero = dct_luma (block_x, block_y, &coeff_cost, 0);
else nonzero = dct_luma_sp(block_x, block_y, &coeff_cost);
if (nonzero)
{
(*cbp_blk) |= 1 << cbp_blk_mask; // one bit for every 4x4 block
(*cbp) |= cbp_mask; // one bit for the 4x4 blocks of an 8x8 block
}
}
}
/*
The purpose of the action below is to prevent that single or 'expensive' coefficients are coded.
With 4x4 transform there is larger chance that a single coefficient in a 8x8 or 16x16 block may be nonzero.
A single small (level=1) coefficient in a 8x8 block will cost: 3 or more bits for the coefficient,
4 bits for EOBs for the 4x4 blocks,possibly also more bits for CBP. Hence the total 'cost' of that single
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -