⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 r2hcii_64.c

📁 最新的FFT程序
💻 C
📖 第 1 页 / 共 4 页
字号:
/* * Copyright (c) 2003, 2006 Matteo Frigo * Copyright (c) 2003, 2006 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Fri Jan 27 20:33:09 EST 2006 */#include "codelet-rdft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_r2hc -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 64 -name r2hcII_64 -dft-II -include r2hcII.h *//* * This function contains 434 FP additions, 320 FP multiplications, * (or, 114 additions, 0 multiplications, 320 fused multiply/add), * 158 stack variables, and 128 memory accesses *//* * Generator Id's :  * $Id: algsimp.ml,v 1.8 2006-01-05 03:04:27 stevenj Exp $ * $Id: fft.ml,v 1.4 2006-01-05 03:04:27 stevenj Exp $ * $Id: gen_r2hc.ml,v 1.17 2006-01-05 03:04:27 stevenj Exp $ */#include "r2hcII.h"static void r2hcII_64(const R *I, R *ro, R *io, stride is, stride ros, stride ios, INT v, INT ivs, INT ovs){     DK(KP941544065, +0.941544065183020778412509402599502357185589796);     DK(KP903989293, +0.903989293123443331586200297230537048710132025);     DK(KP773010453, +0.773010453362736960810906609758469800971041293);     DK(KP472964775, +0.472964775891319928124438237972992463904131113);     DK(KP357805721, +0.357805721314524104672487743774474392487532769);     DK(KP820678790, +0.820678790828660330972281985331011598767386482);     DK(KP989176509, +0.989176509964780973451673738016243063983689533);     DK(KP803207531, +0.803207531480644909806676512963141923879569427);     DK(KP956940335, +0.956940335732208864935797886980269969482849206);     DK(KP741650546, +0.741650546272035369581266691172079863842265220);     DK(KP148335987, +0.148335987538347428753676511486911367000625355);     DK(KP303346683, +0.303346683607342391675883946941299872384187453);     DK(KP998795456, +0.998795456205172392714771604759100694443203615);     DK(KP740951125, +0.740951125354959091175616897495162729728955309);     DK(KP995184726, +0.995184726672196886244836953109479921575474869);     DK(KP906347169, +0.906347169019147157946142717268914412664134293);     DK(KP049126849, +0.049126849769467254105343321271313617079695752);     DK(KP098491403, +0.098491403357164253077197521291327432293052451);     DK(KP980785280, +0.980785280403230449126182236134239036973933731);     DK(KP970031253, +0.970031253194543992603984207286100251456865962);     DK(KP857728610, +0.857728610000272069902269984284770137042490799);     DK(KP881921264, +0.881921264348355029712756863660388349508442621);     DK(KP599376933, +0.599376933681923766271389869014404232837890546);     DK(KP250486960, +0.250486960191305461595702160124721208578685568);     DK(KP534511135, +0.534511135950791641089685961295362908582039528);     DK(KP831469612, +0.831469612302545237078788377617905756738560812);     DK(KP923879532, +0.923879532511286756128183189396788286822416626);     DK(KP414213562, +0.414213562373095048801688724209698078569671875);     DK(KP668178637, +0.668178637919298919997757686523080761552472251);     DK(KP198912367, +0.198912367379658006911597622644676228597850501);     DK(KP707106781, +0.707106781186547524400844362104849039284835938);     INT i;     for (i = v; i > 0; i = i - 1, I = I + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(is), MAKE_VOLATILE_STRIDE(ros), MAKE_VOLATILE_STRIDE(ios)) {	  E T5b, T6q, T6p, T5e;	  {	       E T5h, T3Z, T35, Tm, T5g, T3W, T34, Tv, T5f, T3T, T6N, T6z, T6j, T65, T33;	       E Td, T5z, T4D, T3q, T2C, T5C, T4O, T3n, T2b, T5k, T4b, T3c, TR, T5l, T4e;	       E T3b, TK, T5n, T44, T39, T1c, T5o, T47, T38, T15, T5s, T4k, T3j, T1T, T5v;	       E T4v, T3g, T1s, T1t, T1y, T5D, T4K, T5A, T4R, T3o, T2F, T3r, T2u, T1C, T1H;	       E T1D, T1z, T1w, T1E;	       {		    E T2A, T26, T4B, T23, T4M, T2y, T2z, T29;		    {			 E Te, Tj, Tn, Ts, To, Tk, Th, Tp, Tf, Tg;			 Te = I[WS(is, 28)];			 Tj = I[WS(is, 60)];			 Tf = I[WS(is, 12)];			 Tg = I[WS(is, 44)];			 Tn = I[WS(is, 36)];			 Ts = I[WS(is, 4)];			 To = I[WS(is, 20)];			 Tk = Tg - Tf;			 Th = Tf + Tg;			 Tp = I[WS(is, 52)];			 {			      E T3Q, T8, T3P, T5, T6x, T63, T3R, Tb;			      {				   E T1, T61, T9, T62, T4, Ta;				   {					E T3V, Tu, T3U, Tr, T3Y, Tl;					T1 = I[0];					T3Y = FMA(KP707106781, Tk, Tj);					Tl = FNMS(KP707106781, Tk, Tj);					{					     E T3X, Ti, Tt, Tq;					     T3X = FMA(KP707106781, Th, Te);					     Ti = FNMS(KP707106781, Th, Te);					     Tt = To - Tp;					     Tq = To + Tp;					     T5h = FNMS(KP198912367, T3X, T3Y);					     T3Z = FMA(KP198912367, T3Y, T3X);					     T35 = FMA(KP668178637, Ti, Tl);					     Tm = FNMS(KP668178637, Tl, Ti);					     T3V = FMA(KP707106781, Tt, Ts);					     Tu = FNMS(KP707106781, Tt, Ts);					     T3U = FMA(KP707106781, Tq, Tn);					     Tr = FNMS(KP707106781, Tq, Tn);					     T61 = I[WS(is, 32)];					}					{					     E T2, T3, T6, T7;					     T2 = I[WS(is, 16)];					     T5g = FNMS(KP198912367, T3U, T3V);					     T3W = FMA(KP198912367, T3V, T3U);					     T34 = FMA(KP668178637, Tr, Tu);					     Tv = FNMS(KP668178637, Tu, Tr);					     T3 = I[WS(is, 48)];					     T6 = I[WS(is, 40)];					     T7 = I[WS(is, 8)];					     T9 = I[WS(is, 24)];					     T62 = T2 + T3;					     T4 = T2 - T3;					     T3Q = FNMS(KP414213562, T6, T7);					     T8 = FMA(KP414213562, T7, T6);					     Ta = I[WS(is, 56)];					}				   }				   T3P = FMA(KP707106781, T4, T1);				   T5 = FNMS(KP707106781, T4, T1);				   T6x = FNMS(KP707106781, T62, T61);				   T63 = FMA(KP707106781, T62, T61);				   T3R = FMS(KP414213562, T9, Ta);				   Tb = FMA(KP414213562, Ta, T9);			      }			      {				   E T1Z, T2w, T27, T2x, T22, T28;				   T1Z = I[WS(is, 63)];				   {					E T3S, T6y, T64, Tc;					T3S = T3Q + T3R;					T6y = T3R - T3Q;					T64 = T8 + Tb;					Tc = T8 - Tb;					T5f = FMA(KP923879532, T3S, T3P);					T3T = FNMS(KP923879532, T3S, T3P);					T6N = FNMS(KP923879532, T6y, T6x);					T6z = FMA(KP923879532, T6y, T6x);					T6j = FNMS(KP923879532, T64, T63);					T65 = FMA(KP923879532, T64, T63);					T33 = FMA(KP923879532, Tc, T5);					Td = FNMS(KP923879532, Tc, T5);					T2w = I[WS(is, 31)];				   }				   {					E T20, T21, T24, T25;					T20 = I[WS(is, 15)];					T21 = I[WS(is, 47)];					T24 = I[WS(is, 39)];					T25 = I[WS(is, 7)];					T27 = I[WS(is, 23)];					T2x = T20 + T21;					T22 = T20 - T21;					T2A = FNMS(KP414213562, T24, T25);					T26 = FMA(KP414213562, T25, T24);					T28 = I[WS(is, 55)];				   }				   T4B = FMS(KP707106781, T22, T1Z);				   T23 = FMA(KP707106781, T22, T1Z);				   T4M = FMA(KP707106781, T2x, T2w);				   T2y = FNMS(KP707106781, T2x, T2w);				   T2z = FMS(KP414213562, T27, T28);				   T29 = FMA(KP414213562, T28, T27);			      }			 }		    }		    {			 E T1a, T10, T42, TX, T45, T18, T19, T13;			 {			      E TP, TF, T49, TC, T4c, TN, TO, TI;			      {				   E Ty, TL, TG, TM, TB, TH;				   Ty = I[WS(is, 34)];				   {					E T4C, T2B, T4N, T2a;					T4C = T2A + T2z;					T2B = T2z - T2A;					T4N = T26 + T29;					T2a = T26 - T29;					T5z = FMA(KP923879532, T4C, T4B);					T4D = FNMS(KP923879532, T4C, T4B);					T3q = FMA(KP923879532, T2B, T2y);					T2C = FNMS(KP923879532, T2B, T2y);					T5C = FMA(KP923879532, T4N, T4M);					T4O = FNMS(KP923879532, T4N, T4M);					T3n = FNMS(KP923879532, T2a, T23);					T2b = FMA(KP923879532, T2a, T23);					TL = I[WS(is, 2)];				   }				   {					E Tz, TA, TD, TE;					Tz = I[WS(is, 18)];					TA = I[WS(is, 50)];					TD = I[WS(is, 58)];					TE = I[WS(is, 26)];					TG = I[WS(is, 10)];					TM = Tz - TA;					TB = Tz + TA;					TP = FMA(KP414213562, TD, TE);					TF = FMS(KP414213562, TE, TD);					TH = I[WS(is, 42)];				   }				   T49 = FMA(KP707106781, TB, Ty);				   TC = FNMS(KP707106781, TB, Ty);				   T4c = FMA(KP707106781, TM, TL);				   TN = FNMS(KP707106781, TM, TL);				   TO = FMA(KP414213562, TG, TH);				   TI = FNMS(KP414213562, TH, TG);			      }			      {				   E TT, T16, T11, T17, TW, T12;				   TT = I[WS(is, 30)];				   {					E T4a, TQ, T4d, TJ;					T4a = TO + TP;					TQ = TO - TP;					T4d = TI + TF;					TJ = TF - TI;					T5k = FMA(KP923879532, T4a, T49);					T4b = FNMS(KP923879532, T4a, T49);					T3c = FMA(KP923879532, TQ, TN);					TR = FNMS(KP923879532, TQ, TN);					T5l = FMA(KP923879532, T4d, T4c);					T4e = FNMS(KP923879532, T4d, T4c);					T3b = FMA(KP923879532, TJ, TC);					TK = FNMS(KP923879532, TJ, TC);					T16 = I[WS(is, 62)];				   }				   {					E TU, TV, TY, TZ;					TU = I[WS(is, 14)];					TV = I[WS(is, 46)];					TY = I[WS(is, 6)];					TZ = I[WS(is, 38)];					T11 = I[WS(is, 54)];					T17 = TV - TU;					TW = TU + TV;					T1a = FMA(KP414213562, TY, TZ);					T10 = FMS(KP414213562, TZ, TY);					T12 = I[WS(is, 22)];				   }				   T42 = FMA(KP707106781, TW, TT);				   TX = FNMS(KP707106781, TW, TT);				   T45 = FMA(KP707106781, T17, T16);				   T18 = FNMS(KP707106781, T17, T16);				   T19 = FMA(KP414213562, T11, T12);				   T13 = FNMS(KP414213562, T12, T11);			      }			 }			 {			      E T1R, T1n, T4i, T1k, T4t, T1P, T1Q, T1q;			      {				   E T1g, T1N, T1o, T1O, T1j, T1p;				   T1g = I[WS(is, 1)];				   {					E T43, T1b, T46, T14;					T43 = T1a + T19;					T1b = T19 - T1a;					T46 = T10 + T13;					T14 = T10 - T13;					T5n = FMA(KP923879532, T43, T42);					T44 = FNMS(KP923879532, T43, T42);					T39 = FMA(KP923879532, T1b, T18);					T1c = FNMS(KP923879532, T1b, T18);					T5o = FMA(KP923879532, T46, T45);					T47 = FNMS(KP923879532, T46, T45);					T38 = FMA(KP923879532, T14, TX);					T15 = FNMS(KP923879532, T14, TX);					T1N = I[WS(is, 33)];				   }				   {					E T1h, T1i, T1l, T1m;					T1h = I[WS(is, 17)];					T1i = I[WS(is, 49)];					T1l = I[WS(is, 41)];					T1m = I[WS(is, 9)];					T1o = I[WS(is, 25)];					T1O = T1h + T1i;					T1j = T1h - T1i;					T1R = FNMS(KP414213562, T1l, T1m);					T1n = FMA(KP414213562, T1m, T1l);					T1p = I[WS(is, 57)];				   }				   T4i = FMA(KP707106781, T1j, T1g);				   T1k = FNMS(KP707106781, T1j, T1g);				   T4t = FMA(KP707106781, T1O, T1N);				   T1P = FNMS(KP707106781, T1O, T1N);				   T1Q = FMS(KP414213562, T1o, T1p);				   T1q = FMA(KP414213562, T1p, T1o);			      }			      {				   E T2c, T2h, T2l, T2q, T2m, T2i, T2f, T2n, T2d, T2e;				   T2c = I[WS(is, 27)];				   {					E T4j, T1S, T4u, T1r;					T4j = T1R + T1Q;					T1S = T1Q - T1R;					T4u = T1n + T1q;					T1r = T1n - T1q;					T5s = FMA(KP923879532, T4j, T4i);					T4k = FNMS(KP923879532, T4j, T4i);					T3j = FMA(KP923879532, T1S, T1P);					T1T = FNMS(KP923879532, T1S, T1P);					T5v = FMA(KP923879532, T4u, T4t);					T4v = FNMS(KP923879532, T4u, T4t);					T3g = FMA(KP923879532, T1r, T1k);					T1s = FNMS(KP923879532, T1r, T1k);					T2h = I[WS(is, 59)];					T2d = I[WS(is, 11)];					T2e = I[WS(is, 43)];				   }				   T2l = I[WS(is, 35)];				   T2q = I[WS(is, 3)];				   T2m = I[WS(is, 19)];				   T2i = T2d - T2e;				   T2f = T2d + T2e;				   T2n = I[WS(is, 51)];				   {					E T1u, T1v, T2j, T4I;					T1t = I[WS(is, 29)];					T2j = FMA(KP707106781, T2i, T2h);					T4I = FMS(KP707106781, T2i, T2h);					{					     E T4H, T2g, T2r, T2o;					     T4H = FMA(KP707106781, T2f, T2c);					     T2g = FNMS(KP707106781, T2f, T2c);					     T2r = T2m - T2n;					     T2o = T2m + T2n;					     {						  E T4J, T4P, T2E, T2k;						  T4J = FNMS(KP198912367, T4I, T4H);						  T4P = FMA(KP198912367, T4H, T4I);						  T2E = FMA(KP668178637, T2g, T2j);						  T2k = FNMS(KP668178637, T2j, T2g);						  {						       E T2s, T4F, T4E, T2p;						       T2s = FNMS(KP707106781, T2r, T2q);						       T4F = FMA(KP707106781, T2r, T2q);						       T4E = FMA(KP707106781, T2o, T2l);						       T2p = FNMS(KP707106781, T2o, T2l);						       T1y = I[WS(is, 61)];						       T1u = I[WS(is, 13)];						       {							    E T4G, T4Q, T2D, T2t;							    T4G = FMA(KP198912367, T4F, T4E);							    T4Q = FNMS(KP198912367, T4E, T4F);							    T2D = FMA(KP668178637, T2p, T2s);							    T2t = FNMS(KP668178637, T2s, T2p);							    T5D = T4G + T4J;							    T4K = T4G - T4J;							    T5A = T4Q + T4P;							    T4R = T4P - T4Q;							    T3o = T2D - T2E;							    T2F = T2D + T2E;							    T3r = T2t + T2k;							    T2u = T2k - T2t;							    T1v = I[WS(is, 45)];						       }						  }					     }					}					T1C = I[WS(is, 37)];					T1H = I[WS(is, 5)];

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -