📄 hf_12.c
字号:
/* * Copyright (c) 2003, 2006 Matteo Frigo * Copyright (c) 2003, 2006 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Fri Jan 27 20:19:09 EST 2006 */#include "codelet-rdft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_hc2hc -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 12 -dit -name hf_12 -include hf.h *//* * This function contains 118 FP additions, 68 FP multiplications, * (or, 72 additions, 22 multiplications, 46 fused multiply/add), * 84 stack variables, and 48 memory accesses *//* * Generator Id's : * $Id: algsimp.ml,v 1.8 2006-01-05 03:04:27 stevenj Exp $ * $Id: fft.ml,v 1.4 2006-01-05 03:04:27 stevenj Exp $ * $Id: gen_hc2hc.ml,v 1.15 2006-01-05 03:04:27 stevenj Exp $ */#include "hf.h"static const R *hf_12(R *rio, R *iio, const R *W, stride ios, INT m, INT dist){ DK(KP866025403, +0.866025403784438646763723170752936183471402627); DK(KP500000000, +0.500000000000000000000000000000000000000000000); INT i; for (i = m - 2; i > 0; i = i - 2, rio = rio + dist, iio = iio - dist, W = W + 22, MAKE_VOLATILE_STRIDE(ios)) { E T2n, T2u; { E T1, T2i, T1S, TG, T2e, Tl, T1Y, T10, T2f, T1s, T2s, Ty, T1Z, T1H, T21; E T1d, T3, T6, T1T, T1A, T1V, TT, T4, T1h, T9, Tc, T8, T5, Tb; { E Th, Tk, Tj, T2d, Ti; T1 = rio[0]; T2i = iio[-WS(ios, 11)]; { E TC, TF, TB, TE, T1R, TD, Tg; TC = rio[WS(ios, 3)]; TF = iio[-WS(ios, 8)]; TB = W[4]; TE = W[5]; Th = rio[WS(ios, 6)]; Tk = iio[-WS(ios, 5)]; T1R = TB * TF; TD = TB * TC; Tg = W[10]; Tj = W[11]; T1S = FNMS(TE, TC, T1R); TG = FMA(TE, TF, TD); T2d = Tg * Tk; Ti = Tg * Th; } { E Tn, Tq, Tt, T1o, To, Tw, Ts, Tp, Tv; { E TW, TZ, TV, TY, T1X, TX, Tm; TW = rio[WS(ios, 9)]; TZ = iio[-WS(ios, 2)]; T2e = FNMS(Tj, Th, T2d); Tl = FMA(Tj, Tk, Ti); TV = W[16]; TY = W[17]; Tn = rio[WS(ios, 10)]; Tq = iio[-WS(ios, 1)]; T1X = TV * TZ; TX = TV * TW; Tm = W[18]; Tt = rio[WS(ios, 2)]; T1Y = FNMS(TY, TW, T1X); T10 = FMA(TY, TZ, TX); T1o = Tm * Tq; To = Tm * Tn; Tw = iio[-WS(ios, 9)]; Ts = W[2]; Tp = W[19]; Tv = W[3]; } { E T12, T15, T13, T1D, T18, T1b, T17, T14, T1a; { E T1p, Tr, T1r, Tx, T1q, Tu, T11; T12 = rio[WS(ios, 1)]; T1q = Ts * Tw; Tu = Ts * Tt; T1p = FNMS(Tp, Tn, T1o); Tr = FMA(Tp, Tq, To); T1r = FNMS(Tv, Tt, T1q); Tx = FMA(Tv, Tw, Tu); T15 = iio[-WS(ios, 10)]; T11 = W[0]; T2f = T1p + T1r; T1s = T1p - T1r; T2s = Tx - Tr; Ty = Tr + Tx; T13 = T11 * T12; T1D = T11 * T15; } T18 = rio[WS(ios, 5)]; T1b = iio[-WS(ios, 6)]; T17 = W[8]; T14 = W[1]; T1a = W[9]; { E TI, TL, TJ, T1w, TO, TR, TN, TK, TQ; { E T1E, T16, T1G, T1c, T1F, T19, TH; TI = rio[WS(ios, 7)]; T1F = T17 * T1b; T19 = T17 * T18; T1E = FNMS(T14, T12, T1D); T16 = FMA(T14, T15, T13); T1G = FNMS(T1a, T18, T1F); T1c = FMA(T1a, T1b, T19); TL = iio[-WS(ios, 4)]; TH = W[12]; T1Z = T1E + T1G; T1H = T1E - T1G; T21 = T1c - T16; T1d = T16 + T1c; TJ = TH * TI; T1w = TH * TL; } TO = rio[WS(ios, 11)]; TR = iio[0]; TN = W[20]; TK = W[13]; TQ = W[21]; { E T1x, TM, T1z, TS, T1y, TP, T2; T3 = rio[WS(ios, 4)]; T1y = TN * TR; TP = TN * TO; T1x = FNMS(TK, TI, T1w); TM = FMA(TK, TL, TJ); T1z = FNMS(TQ, TO, T1y); TS = FMA(TQ, TR, TP); T6 = iio[-WS(ios, 7)]; T2 = W[6]; T1T = T1x + T1z; T1A = T1x - T1z; T1V = TS - TM; TT = TM + TS; T4 = T2 * T3; T1h = T2 * T6; } T9 = rio[WS(ios, 8)]; Tc = iio[-WS(ios, 3)]; T8 = W[14]; T5 = W[7]; Tb = W[15]; } } } } { E T1n, T2r, T1v, T1l, T2p, T2o, T1C, T29, T1U, T1g, T2k, T1f, T28, TA, T2a; E T20, T2m, T2l, T2b, T2c; { E Tz, T1i, T7, T1k, Td, T2g, T1j, Ta; T1n = FNMS(KP500000000, Ty, Tl); Tz = Tl + Ty; T1j = T8 * Tc; Ta = T8 * T9; T1i = FNMS(T5, T3, T1h); T7 = FMA(T5, T6, T4); T1k = FNMS(Tb, T9, T1j); Td = FMA(Tb, Tc, Ta); T2g = T2e + T2f; T2r = FNMS(KP500000000, T2f, T2e); { E TU, Te, T2j, T1e, T2h, Tf; T1v = FNMS(KP500000000, TT, TG); TU = TG + TT; T2h = T1i + T1k; T1l = T1i - T1k; T2p = Td - T7; Te = T7 + Td; T2j = T2h + T2i; T2o = FNMS(KP500000000, T2h, T2i); T1C = FNMS(KP500000000, T1d, T10); T1e = T10 + T1d; T29 = T1S + T1T; T1U = FNMS(KP500000000, T1T, T1S); T1g = FNMS(KP500000000, Te, T1); Tf = T1 + Te; T2m = T2j - T2g; T2k = T2g + T2j; T2l = TU - T1e; T1f = TU + T1e; T28 = Tf - Tz; TA = Tf + Tz; T2a = T1Y + T1Z; T20 = FNMS(KP500000000, T1Z, T1Y); } } iio[-WS(ios, 3)] = T2l + T2m; rio[WS(ios, 9)] = T2l - T2m; rio[0] = TA + T1f; iio[-WS(ios, 6)] = TA - T1f; T2b = T29 - T2a; T2c = T29 + T2a; { E T1m, T1K, T2z, T2q, T2t, T2y, T1t, T1L, T1B, T1N, T25, T1W; iio[0] = T2c + T2k; rio[WS(ios, 6)] = T2c - T2k; iio[-WS(ios, 9)] = T28 + T2b; rio[WS(ios, 3)] = T28 - T2b; T1m = FNMS(KP866025403, T1l, T1g); T1K = FMA(KP866025403, T1l, T1g); T2z = FNMS(KP866025403, T2p, T2o); T2q = FMA(KP866025403, T2p, T2o); T2t = FMA(KP866025403, T2s, T2r); T2y = FNMS(KP866025403, T2s, T2r); T1t = FNMS(KP866025403, T1s, T1n); T1L = FMA(KP866025403, T1s, T1n); T1B = FNMS(KP866025403, T1A, T1v); T1N = FMA(KP866025403, T1A, T1v); T25 = FMA(KP866025403, T1V, T1U); T1W = FNMS(KP866025403, T1V, T1U); { E T1Q, T2C, T24, T23, T2B, T27, T2v, T2w; { E T1u, T2A, T22, T26, T1I, T1O; T1Q = T1m - T1t; T1u = T1m + T1t; T2A = T2y + T2z; T2C = T2z - T2y; T22 = FNMS(KP866025403, T21, T20); T26 = FMA(KP866025403, T21, T20); T1I = FNMS(KP866025403, T1H, T1C); T1O = FMA(KP866025403, T1H, T1C); { E T1M, T2x, T1P, T1J; T24 = T1K - T1L; T1M = T1K + T1L; T2x = T1W + T22; T23 = T1W - T22; T2n = T1O - T1N; T1P = T1N + T1O; T1J = T1B + T1I; T2B = T1I - T1B; T27 = T25 - T26; T2v = T25 + T26; iio[-WS(ios, 2)] = T2A - T2x; rio[WS(ios, 8)] = -(T2x + T2A); rio[WS(ios, 4)] = T1M + T1P; iio[-WS(ios, 10)] = T1M - T1P; iio[-WS(ios, 8)] = T1u + T1J; rio[WS(ios, 2)] = T1u - T1J; T2w = T2t + T2q; T2u = T2q - T2t; } } iio[-WS(ios, 4)] = T2v + T2w; rio[WS(ios, 10)] = T2v - T2w; rio[WS(ios, 5)] = T1Q + T23; iio[-WS(ios, 11)] = T1Q - T23; iio[-WS(ios, 5)] = T2B + T2C; rio[WS(ios, 11)] = T2B - T2C; rio[WS(ios, 1)] = T24 + T27; iio[-WS(ios, 7)] = T24 - T27; } } } } iio[-WS(ios, 1)] = T2n + T2u; rio[WS(ios, 7)] = T2n - T2u; } return W;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -