📄 hf_64.c
字号:
T6u = iio[-WS(ios, 44)]; TaZ = T6j * T6n; T6l = T6j * T6k; T6q = W[36]; T6t = W[37]; Tb0 = FNMS(T6m, T6k, TaZ); T6o = FMA(T6m, T6n, T6l); Tb4 = T6q * T6u; T6s = T6q * T6r; } } { E Tb1, TfY, T6p, Tb3, Tb5, T6v; Tb1 = TaY - Tb0; TfY = TaY + Tb0; T6p = T6i + T6o; Tb3 = T6i - T6o; Tb5 = FNMS(T6t, T6r, Tb4); T6v = FMA(T6t, T6u, T6s); { E Tb8, TfZ, TaW, T6C; Tb8 = Tb5 - Tb7; TfZ = Tb5 + Tb7; TaW = T6B - T6v; T6C = T6v + T6B; Tg0 = TfY - TfZ; ThY = TfY + TfZ; Tb2 = TaW - Tb1; Tdq = Tb1 + TaW; TfX = T6p - T6C; T6D = T6p + T6C; Tdp = Tb3 + Tb8; Tb9 = Tb3 - Tb8; } } } { E TaJ, T6J, TaS, T72, T6S, T6V, T6U, TaL, T6P, TaP, T6T; { E T6Y, T71, T70, TaR, T6Z; { E T6F, T6I, T6E, T6H, TaI, T6G, T6X; T6F = rio[WS(ios, 59)]; Tge = Tg0 - TfX; Tg1 = TfX + Tg0; Tbp = FMA(KP414213562, Tb2, Tb9); Tba = FNMS(KP414213562, Tb9, Tb2); Tdr = FMA(KP414213562, Tdq, Tdp); TdA = FNMS(KP414213562, Tdp, Tdq); T6I = iio[-WS(ios, 4)]; T6E = W[116]; T6H = W[117]; T6Y = rio[WS(ios, 43)]; T71 = iio[-WS(ios, 20)]; TaI = T6E * T6I; T6G = T6E * T6F; T6X = W[84]; T70 = W[85]; TaJ = FNMS(T6H, T6F, TaI); T6J = FMA(T6H, T6I, T6G); TaR = T6X * T71; T6Z = T6X * T6Y; } { E T6L, T6O, T6K, T6N, TaK, T6M, T6R; T6L = rio[WS(ios, 27)]; T6O = iio[-WS(ios, 36)]; TaS = FNMS(T70, T6Y, TaR); T72 = FMA(T70, T71, T6Z); T6K = W[52]; T6N = W[53]; T6S = rio[WS(ios, 11)]; T6V = iio[-WS(ios, 52)]; TaK = T6K * T6O; T6M = T6K * T6L; T6R = W[20]; T6U = W[21]; TaL = FNMS(T6N, T6L, TaK); T6P = FMA(T6N, T6O, T6M); TaP = T6R * T6V; T6T = T6R * T6S; } } { E TaM, Tg3, T6Q, TaO, TaQ, T6W; TaM = TaJ - TaL; Tg3 = TaJ + TaL; T6Q = T6J + T6P; TaO = T6J - T6P; TaQ = FNMS(T6U, T6S, TaP); T6W = FMA(T6U, T6V, T6T); { E TaT, Tg4, TaH, T73; TaT = TaQ - TaS; Tg4 = TaQ + TaS; TaH = T72 - T6W; T73 = T6W + T72; Tg5 = Tg3 - Tg4; ThZ = Tg3 + Tg4; TaN = TaH - TaM; Tdt = TaM + TaH; Tg2 = T6Q - T73; T74 = T6Q + T73; Tds = TaO + TaT; TaU = TaO - TaT; } } } } { E Tfz, T9E, Td7, Tfw, Td6, T9L; { E T9z, T4v, T9J, T4O, T4E, T4H, T4G, T9B, T4B, T9G, T4F; { E T4K, T4N, T4M, T9I, T4L; { E T4r, T4u, T4q, T4t, T9y, T4s, T4J; T4r = rio[WS(ios, 5)]; Tgf = Tg2 + Tg5; Tg6 = Tg2 - Tg5; Tbo = FNMS(KP414213562, TaN, TaU); TaV = FMA(KP414213562, TaU, TaN); Tdu = FNMS(KP414213562, Tdt, Tds); TdB = FMA(KP414213562, Tds, Tdt); T4u = iio[-WS(ios, 58)]; T4q = W[8]; T4t = W[9]; T4K = rio[WS(ios, 53)]; T4N = iio[-WS(ios, 10)]; T9y = T4q * T4u; T4s = T4q * T4r; T4J = W[104]; T4M = W[105]; T9z = FNMS(T4t, T4r, T9y); T4v = FMA(T4t, T4u, T4s); T9I = T4J * T4N; T4L = T4J * T4K; } { E T4x, T4A, T4w, T4z, T9A, T4y, T4D; T4x = rio[WS(ios, 37)]; T4A = iio[-WS(ios, 26)]; T9J = FNMS(T4M, T4K, T9I); T4O = FMA(T4M, T4N, T4L); T4w = W[72]; T4z = W[73]; T4E = rio[WS(ios, 21)]; T4H = iio[-WS(ios, 42)]; T9A = T4w * T4A; T4y = T4w * T4x; T4D = W[40]; T4G = W[41]; T9B = FNMS(T4z, T4x, T9A); T4B = FMA(T4z, T4A, T4y); T9G = T4D * T4H; T4F = T4D * T4E; } } { E T9C, Tfx, T4C, T9F, T9H, T4I; T9C = T9z - T9B; Tfx = T9z + T9B; T4C = T4v + T4B; T9F = T4v - T4B; T9H = FNMS(T4G, T4E, T9G); T4I = FMA(T4G, T4H, T4F); { E T9K, Tfy, T9D, T4P; T9K = T9H - T9J; Tfy = T9H + T9J; T9D = T4I - T4O; T4P = T4I + T4O; Tfz = Tfx - Tfy; ThN = Tfx + Tfy; T9E = T9C + T9D; Td7 = T9C - T9D; Tfw = T4C - T4P; T4Q = T4C + T4P; Td6 = T9F + T9K; T9L = T9F - T9K; } } } { E T9O, T4W, T9Y, T5f, T55, T58, T57, T9Q, T52, T9V, T56; { E T5b, T5e, T5d, T9X, T5c; { E T4S, T4V, T4R, T4U, T9N, T4T, T5a; T4S = rio[WS(ios, 61)]; TfN = Tfz - Tfw; TfA = Tfw + Tfz; Tag = FNMS(KP414213562, T9E, T9L); T9M = FMA(KP414213562, T9L, T9E); Td8 = FMA(KP414213562, Td7, Td6); Tdh = FNMS(KP414213562, Td6, Td7); T4V = iio[-WS(ios, 2)]; T4R = W[120]; T4U = W[121]; T5b = rio[WS(ios, 45)]; T5e = iio[-WS(ios, 18)]; T9N = T4R * T4V; T4T = T4R * T4S; T5a = W[88]; T5d = W[89]; T9O = FNMS(T4U, T4S, T9N); T4W = FMA(T4U, T4V, T4T); T9X = T5a * T5e; T5c = T5a * T5b; } { E T4Y, T51, T4X, T50, T9P, T4Z, T54; T4Y = rio[WS(ios, 29)]; T51 = iio[-WS(ios, 34)]; T9Y = FNMS(T5d, T5b, T9X); T5f = FMA(T5d, T5e, T5c); T4X = W[56]; T50 = W[57]; T55 = rio[WS(ios, 13)]; T58 = iio[-WS(ios, 50)]; T9P = T4X * T51; T4Z = T4X * T4Y; T54 = W[24]; T57 = W[25]; T9Q = FNMS(T50, T4Y, T9P); T52 = FMA(T50, T51, T4Z); T9V = T54 * T58; T56 = T54 * T55; } } { E T9R, TfC, T53, T9U, T9W, T59; T9R = T9O - T9Q; TfC = T9O + T9Q; T53 = T4W + T52; T9U = T4W - T52; T9W = FNMS(T57, T55, T9V); T59 = FMA(T57, T58, T56); { E T9Z, TfD, T9S, T5g; T9Z = T9W - T9Y; TfD = T9W + T9Y; T9S = T59 - T5f; T5g = T59 + T5f; TfE = TfC - TfD; ThO = TfC + TfD; T9T = T9R + T9S; Tda = T9R - T9S; TfB = T53 - T5g; T5h = T53 + T5g; Td9 = T9U + T9Z; Ta0 = T9U - T9Z; } } } } } { E TfO, TfF, Taf, Ta1, Tdb, Tdi, Tje, Tjd, TjO, TjN; { E Thq, Tj7, Thy, ThA, Tht, Tj8, Thx, ThD, ThX, ThS, ThV, Ti0, ThM, ThK, ThJ; E ThP, TiI, TiZ, TiL, Tj0; { E Tio, T1I, Tj1, T3v, Tj2, TiX, TiN, Tir, T76, TiK, TiC, TiG, T5j, Tit, Tiw; E TiJ; { E TiO, TiW, Tip, Tiq; { E TO, T1H, T2B, T3u; Thq = Tm - TN; TO = Tm + TN; TfO = TfB + TfE; TfF = TfB - TfE; Taf = FMA(KP414213562, T9T, Ta0); Ta1 = FNMS(KP414213562, Ta0, T9T); Tdb = FNMS(KP414213562, Tda, Td9); Tdi = FMA(KP414213562, Td9, Tda); T1H = T1f + T1G; Tj7 = T1G - T1f; Thy = T29 - T2A; T2B = T29 + T2A; T3u = T32 + T3t; ThA = T32 - T3t; Tht = Thr - Ths; TiO = Thr + Ths; Tio = TO - T1H; T1I = TO + T1H; Tj1 = T3u - T2B; T3v = T2B + T3u; TiW = TiP + TiV; Tj8 = TiV - TiP; } Thx = Thv - Thw; Tip = Thv + Thw; Tiq = ThB + ThC; ThD = ThB - ThC; { E T6c, T75, Tiz, TiA; ThX = T5K - T6b; T6c = T5K + T6b; Tj2 = TiW - TiO; TiX = TiO + TiW; TiN = Tip + Tiq; Tir = Tip - Tiq; T75 = T6D + T74; ThS = T74 - T6D; ThV = ThT - ThU; Tiz = ThT + ThU; TiA = ThY + ThZ; Ti0 = ThY - ThZ; { E T4p, Tiy, TiB, T5i, Tiu, Tiv; ThM = T3X - T4o; T4p = T3X + T4o; T76 = T6c + T75; Tiy = T6c - T75; TiK = Tiz + TiA; TiB = Tiz - TiA; T5i = T4Q + T5h; ThK = T5h - T4Q; ThJ = ThH - ThI; Tiu = ThH + ThI; Tiv = ThN + ThO; ThP = ThN - ThO; TiC = Tiy - TiB; TiG = Tiy + TiB; T5j = T4p + T5i; Tit = T4p - T5i; Tiw = Tiu - Tiv; TiJ = Tiu + Tiv; } } } { E TiE, Tis, TiD, Tj6, Tj5, Tj3, Tj4, TiH; { E T3w, TiF, Tix, T77, TiM, TiY; TiI = T1I - T3v; T3w = T1I + T3v; TiF = Tiw - Tit; Tix = Tit + Tiw; T77 = T5j + T76; TiZ = T76 - T5j; TiL = TiJ - TiK; TiM = TiJ + TiK; TiY = TiN + TiX; Tj0 = TiX - TiN; TiE = Tio - Tir; Tis = Tio + Tir; rio[0] = T3w + T77; iio[-WS(ios, 32)] = T3w - T77; iio[0] = TiM + TiY; rio[WS(ios, 32)] = TiM - TiY; TiD = Tix + TiC; Tj6 = TiC - Tix; Tj5 = Tj2 - Tj1; Tj3 = Tj1 + Tj2; Tj4 = TiF + TiG; TiH = TiF - TiG; } rio[WS(ios, 8)] = FMA(KP707106781, TiD, Tis); iio[-WS(ios, 40)] = FNMS(KP707106781, TiD, Tis); iio[-WS(ios, 8)] = FMA(KP707106781, Tj4, Tj3); rio[WS(ios, 40)] = FMS(KP707106781, Tj4, Tj3); rio[WS(ios, 24)] = FMA(KP707106781, TiH, TiE); iio[-WS(ios, 56)] = FNMS(KP707106781, TiH, TiE); iio[-WS(ios, 24)] = FMA(KP707106781, Tj6, Tj5); rio[WS(ios, 56)] = FMS(KP707106781, Tj6, Tj5); } } { E Ti8, Thu, Tjf, Tj9, Tib, Tjg, Tja, ThF, Tih, ThW, Tif, Til, Ti5, ThR; rio[WS(ios, 16)] = TiI + TiL; iio[-WS(ios, 48)] = TiI - TiL; iio[-WS(ios, 16)] = TiZ + Tj0; rio[WS(ios, 48)] = TiZ - Tj0; Ti8 = Thq + Tht; Thu = Thq - Tht; Tjf = Tj8 - Tj7; Tj9 = Tj7 + Tj8; { E Tie, ThL, Tid, ThQ; { E Ti9, Thz, Tia, ThE; Ti9 = Thy + Thx; Thz = Thx - Thy; Tia = ThA - ThD; ThE = ThA + ThD; Tib = Ti9 + Tia; Tjg = Tia - Ti9; Tja = Thz + ThE; ThF = Thz - ThE; Tie = ThJ + ThK; ThL = ThJ - ThK; } Tid = ThM + ThP; ThQ = ThM - ThP; Tih = ThV + ThS; ThW = ThS - ThV; Tif = FMA(KP414213562, Tie, Tid); Til = FNMS(KP414213562, Tid, Tie); Ti5 = FNMS(KP414213562, ThL, ThQ); ThR = FMA(KP414213562, ThQ, ThL); } { E Ti4, ThG, Tjh, Tjj, Tig, Ti1; Ti4 = FNMS(KP707106781, ThF, Thu); ThG = FMA(KP707106781, ThF, Thu); Tjh = FMA(KP707106781, Tjg, Tjf); Tjj = FNMS(KP707106781, Tjg, Tjf); Tig = ThX + Ti0; Ti1 = ThX - Ti0; { E Tik, Tjb, Tjc, Tin; { E Tic, Tim, Ti6, Ti2, Tij, Tii; Tik = FNMS(KP707106781, Tib, Ti8); Tic = FMA(KP707106781, Tib, Ti8); Tii = FNMS(KP414213562, Tih, Tig); Tim = FMA(KP414213562, Tig, Tih); Ti6 = FNMS(KP414213562, ThW, Ti1); Ti2 = FMA(KP414213562, Ti1, ThW); Tij = Tif + Tii; Tje = Tii - Tif; Tjd = FNMS(KP707106781, Tja, Tj9); Tjb = FMA(KP707106781, Tja, Tj9); { E Ti7, Tji, Tjk, Ti3; Ti7 = Ti5 + Ti6; Tji = Ti6 - Ti5; Tjk = Ti2 - ThR; Ti3 = ThR + Ti2; rio[WS(ios, 4)] = FMA(KP923879532, Tij, Tic); iio[-WS(ios, 36)] = FNMS(KP923879532, Tij, Tic); iio[-WS(ios, 60)] = FMA(KP923879532, Ti7, Ti4); rio[WS(ios, 28)] = FNMS(KP923879532, Ti7, Ti4); iio[-WS(ios, 12)] = FMA(KP923879532, Tji, Tjh); rio[WS(ios, 44)] = FMS(KP923879532, Tji, Tjh); iio[-WS(ios, 28)] = FMA(KP923879532, Tjk, Tjj); rio[WS(ios, 60)] = FMS(KP923879532, Tjk, Tjj); rio[WS(ios, 12)] = FMA(KP923879532, Ti3, ThG); iio[-WS(ios, 44)] = FNMS(KP923879532, Ti3, ThG); Tjc = Til + Tim; Tin = Til - Tim; } } iio[-WS(ios, 4)] = FMA(KP923879532, Tjc, Tjb); rio[WS(ios, 36)] = FMS(KP923879532, Tjc, Tjb); rio[WS(ios, 20)] = FMA(KP923879532, Tin, Tik); iio[-WS(ios, 52)] = FNMS(KP923879532, Tin, Tik); } } }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -