📄 hf_64.c
字号:
} } } { E T8p, T1O, T85, T27, T1X, T20, T1Z, T8r, T1U, T82, T1Y; { E T23, T26, T25, T84, T24; { E T1K, T1N, T1J, T1M, T8o, T1L, T22; T1K = rio[WS(ios, 2)]; T1N = iio[-WS(ios, 61)]; T1J = W[2]; T1M = W[3]; T23 = rio[WS(ios, 50)]; T26 = iio[-WS(ios, 13)]; T8o = T1J * T1N; T1L = T1J * T1K; T22 = W[98]; T25 = W[99]; T8p = FNMS(T1M, T1K, T8o); T1O = FMA(T1M, T1N, T1L); T84 = T22 * T26; T24 = T22 * T23; } { E T1Q, T1T, T1P, T1S, T8q, T1R, T1W; T1Q = rio[WS(ios, 34)]; T1T = iio[-WS(ios, 29)]; T85 = FNMS(T25, T23, T84); T27 = FMA(T25, T26, T24); T1P = W[66]; T1S = W[67]; T1X = rio[WS(ios, 18)]; T20 = iio[-WS(ios, 45)]; T8q = T1P * T1T; T1R = T1P * T1Q; T1W = W[34]; T1Z = W[35]; T8r = FNMS(T1S, T1Q, T8q); T1U = FMA(T1S, T1T, T1R); T82 = T1W * T20; T1Y = T1W * T1X; } } { E T8s, Tf8, T1V, T81, T83, T21; T8s = T8p - T8r; Tf8 = T8p + T8r; T1V = T1O + T1U; T81 = T1O - T1U; T83 = FNMS(T1Z, T1X, T82); T21 = FMA(T1Z, T20, T1Y); { E Tf9, T86, T8t, T28; Tf9 = T83 + T85; T86 = T83 - T85; T8t = T21 - T27; T28 = T21 + T27; T87 = T81 - T86; TcN = T81 + T86; Tfa = Tf8 - Tf9; Thv = Tf8 + Tf9; T29 = T1V + T28; Tf3 = T1V - T28; TcQ = T8s - T8t; T8u = T8s + T8t; } } } { E T7w, TU, T7G, T1d, T13, T16, T15, T7y, T10, T7D, T14; { E T19, T1c, T1b, T7F, T1a; { E TQ, TT, TP, TS, T7v, TR, T18; TQ = rio[WS(ios, 4)]; TT = iio[-WS(ios, 59)]; TP = W[6]; TS = W[7]; T19 = rio[WS(ios, 52)]; T1c = iio[-WS(ios, 11)]; T7v = TP * TT; TR = TP * TQ; T18 = W[102]; T1b = W[103]; T7w = FNMS(TS, TQ, T7v); TU = FMA(TS, TT, TR); T7F = T18 * T1c; T1a = T18 * T19; } { E TW, TZ, TV, TY, T7x, TX, T12; TW = rio[WS(ios, 36)]; TZ = iio[-WS(ios, 27)]; T7G = FNMS(T1b, T19, T7F); T1d = FMA(T1b, T1c, T1a); TV = W[70]; TY = W[71]; T13 = rio[WS(ios, 20)]; T16 = iio[-WS(ios, 43)]; T7x = TV * TZ; TX = TV * TW; T12 = W[38]; T15 = W[39]; T7y = FNMS(TY, TW, T7x); T10 = FMA(TY, TZ, TX); T7D = T12 * T16; T14 = T12 * T13; } } { E T7z, TeS, T11, T7C, T7E, T17; T7z = T7w - T7y; TeS = T7w + T7y; T11 = TU + T10; T7C = TU - T10; T7E = FNMS(T15, T13, T7D); T17 = FMA(T15, T16, T14); { E T7H, TeT, T7A, T1e; T7H = T7E - T7G; TeT = T7E + T7G; T7A = T17 - T1d; T1e = T17 + T1d; TeU = TeS - TeT; Thr = TeS + TeT; T7B = T7z + T7A; TcG = T7z - T7A; T1f = T11 + T1e; TeR = T11 - T1e; TcF = T7C + T7H; T7I = T7C - T7H; } } } } { E Tbl, Tbk, T8v, T8w, Tab, Tac; { E T8g, T2f, T8c, T2y, T2o, T2r, T2q, T8i, T2l, T89, T2p; { E T2u, T2x, T2w, T8b, T2v; { E T2b, T2e, T2a, T2d, T8f, T2c, T2t; T2b = rio[WS(ios, 10)]; T2e = iio[-WS(ios, 53)]; T2a = W[18]; T2d = W[19]; T2u = rio[WS(ios, 26)]; T2x = iio[-WS(ios, 37)]; T8f = T2a * T2e; T2c = T2a * T2b; T2t = W[50]; T2w = W[51]; T8g = FNMS(T2d, T2b, T8f); T2f = FMA(T2d, T2e, T2c); T8b = T2t * T2x; T2v = T2t * T2u; } { E T2h, T2k, T2g, T2j, T8h, T2i, T2n; T2h = rio[WS(ios, 42)]; T2k = iio[-WS(ios, 21)]; T8c = FNMS(T2w, T2u, T8b); T2y = FMA(T2w, T2x, T2v); T2g = W[82]; T2j = W[83]; T2o = rio[WS(ios, 58)]; T2r = iio[-WS(ios, 5)]; T8h = T2g * T2k; T2i = T2g * T2h; T2n = W[114]; T2q = W[115]; T8i = FNMS(T2j, T2h, T8h); T2l = FMA(T2j, T2k, T2i); T89 = T2n * T2r; T2p = T2n * T2o; } } { E T8j, Tf4, T2m, T8k, T8a, T2s, T8l, T8e; T8j = T8g - T8i; Tf4 = T8g + T8i; T2m = T2f + T2l; T8k = T2f - T2l; T8a = FNMS(T2q, T2o, T89); T2s = FMA(T2q, T2r, T2p); { E Tf5, T8d, T2z, T88; Tf5 = T8a + T8c; T8d = T8a - T8c; T2z = T2s + T2y; T88 = T2s - T2y; T8v = T8k + T8j; T8l = T8j - T8k; Thw = Tf4 + Tf5; Tf6 = Tf4 - Tf5; T8w = T88 - T8d; T8e = T88 + T8d; Tfb = T2z - T2m; T2A = T2m + T2z; } TcR = T8l + T8e; T8m = T8e - T8l; } } { E Taz, T5Q, Tav, T69, T5Z, T62, T61, TaB, T5W, Tas, T60; { E T65, T68, T67, Tau, T66; { E T5M, T5P, T5L, T5O, Tay, T5N, T64; T5M = rio[WS(ios, 7)]; TcO = T8v + T8w; T8x = T8v - T8w; T5P = iio[-WS(ios, 56)]; T5L = W[12]; T5O = W[13]; T65 = rio[WS(ios, 23)]; T68 = iio[-WS(ios, 40)]; Tay = T5L * T5P; T5N = T5L * T5M; T64 = W[44]; T67 = W[45]; Taz = FNMS(T5O, T5M, Tay); T5Q = FMA(T5O, T5P, T5N); Tau = T64 * T68; T66 = T64 * T65; } { E T5S, T5V, T5R, T5U, TaA, T5T, T5Y; T5S = rio[WS(ios, 39)]; T5V = iio[-WS(ios, 24)]; Tav = FNMS(T67, T65, Tau); T69 = FMA(T67, T68, T66); T5R = W[76]; T5U = W[77]; T5Z = rio[WS(ios, 55)]; T62 = iio[-WS(ios, 8)]; TaA = T5R * T5V; T5T = T5R * T5S; T5Y = W[108]; T61 = W[109]; TaB = FNMS(T5U, T5S, TaA); T5W = FMA(T5U, T5V, T5T); Tas = T5Y * T62; T60 = T5Y * T5Z; } } { E TaC, TfT, T5X, TaD, Tat, T63, TaE, Tax; TaC = Taz - TaB; TfT = Taz + TaB; T5X = T5Q + T5W; TaD = T5Q - T5W; Tat = FNMS(T61, T5Z, Tas); T63 = FMA(T61, T62, T60); { E TfU, Taw, T6a, Tar; TfU = Tat + Tav; Taw = Tat - Tav; T6a = T63 + T69; Tar = T63 - T69; Tbl = TaD + TaC; TaE = TaC - TaD; ThU = TfT + TfU; TfV = TfT - TfU; Tbk = Tar - Taw; Tax = Tar + Taw; Tgc = T6a - T5X; T6b = T5X + T6a; } Tdy = TaE + Tax; TaF = Tax - TaE; } } { E T9q, T43, T9m, T4m, T4c, T4f, T4e, T9s, T49, T9j, T4d; { E T4i, T4l, T4k, T9l, T4j; { E T3Z, T42, T3Y, T41, T9p, T40, T4h; T3Z = rio[WS(ios, 9)]; Tdn = Tbl + Tbk; Tbm = Tbk - Tbl; T42 = iio[-WS(ios, 54)]; T3Y = W[16]; T41 = W[17]; T4i = rio[WS(ios, 25)]; T4l = iio[-WS(ios, 38)]; T9p = T3Y * T42; T40 = T3Y * T3Z; T4h = W[48]; T4k = W[49]; T9q = FNMS(T41, T3Z, T9p); T43 = FMA(T41, T42, T40); T9l = T4h * T4l; T4j = T4h * T4i; } { E T45, T48, T44, T47, T9r, T46, T4b; T45 = rio[WS(ios, 41)]; T48 = iio[-WS(ios, 22)]; T9m = FNMS(T4k, T4i, T9l); T4m = FMA(T4k, T4l, T4j); T44 = W[80]; T47 = W[81]; T4c = rio[WS(ios, 57)]; T4f = iio[-WS(ios, 6)]; T9r = T44 * T48; T46 = T44 * T45; T4b = W[112]; T4e = W[113]; T9s = FNMS(T47, T45, T9r); T49 = FMA(T47, T48, T46); T9j = T4b * T4f; T4d = T4b * T4c; } } { E T9t, Tfs, T4a, T9u, T9k, T4g, T9v, T9o; T9t = T9q - T9s; Tfs = T9q + T9s; T4a = T43 + T49; T9u = T43 - T49; T9k = FNMS(T4e, T4c, T9j); T4g = FMA(T4e, T4f, T4d); { E Tft, T9n, T4n, T9i; Tft = T9k + T9m; T9n = T9k - T9m; T4n = T4g + T4m; T9i = T4g - T4m; Tab = T9u + T9t; T9v = T9t - T9u; ThI = Tfs + Tft; Tfu = Tfs - Tft; Tac = T9i - T9n; T9o = T9i + T9n; TfL = T4n - T4a; T4o = T4a + T4n; } Tdf = T9v + T9o; T9w = T9o - T9v; } } { E T8P, T38, T8L, T3r, T3h, T3k, T3j, T8R, T3e, T8I, T3i; { E T3n, T3q, T3p, T8K, T3o; { E T34, T37, T33, T36, T8O, T35, T3m; T34 = rio[WS(ios, 6)]; Td4 = Tab + Tac; Tad = Tab - Tac; T37 = iio[-WS(ios, 57)]; T33 = W[10]; T36 = W[11]; T3n = rio[WS(ios, 22)]; T3q = iio[-WS(ios, 41)]; T8O = T33 * T37; T35 = T33 * T34; T3m = W[42]; T3p = W[43]; T8P = FNMS(T36, T34, T8O); T38 = FMA(T36, T37, T35); T8K = T3m * T3q; T3o = T3m * T3n; } { E T3a, T3d, T39, T3c, T8Q, T3b, T3g; T3a = rio[WS(ios, 38)]; T3d = iio[-WS(ios, 25)]; T8L = FNMS(T3p, T3n, T8K); T3r = FMA(T3p, T3q, T3o); T39 = W[74]; T3c = W[75]; T3h = rio[WS(ios, 54)]; T3k = iio[-WS(ios, 9)]; T8Q = T39 * T3d; T3b = T39 * T3a; T3g = W[106]; T3j = W[107]; T8R = FNMS(T3c, T3a, T8Q); T3e = FMA(T3c, T3d, T3b); T8I = T3g * T3k; T3i = T3g * T3h; } } { E T8S, Tff, T3f, T8T, T8J, T3l, T8U, T8N; T8S = T8P - T8R; Tff = T8P + T8R; T3f = T38 + T3e; T8T = T38 - T3e; T8J = FNMS(T3j, T3h, T8I); T3l = FMA(T3j, T3k, T3i); { E Tfg, T8M, T3s, T8H; Tfg = T8J + T8L; T8M = T8J - T8L; T3s = T3l + T3r; T8H = T3l - T3r; T94 = T8T + T8S; T8U = T8S - T8T; ThC = Tff + Tfg; Tfh = Tff - Tfg; T95 = T8H - T8M; T8N = T8H + T8M; Tfm = T3s - T3f; T3t = T3f + T3s; } TcY = T8U + T8N; T8V = T8N - T8U; } } } { E Tg5, TaN, Tdt, Tg2, Tds, TaU; { E Tg0, Tb2, Tdq, TfX, Tdp, Tb9; { E TaY, T6i, Tb7, T6B, T6r, T6u, T6t, Tb0, T6o, Tb4, T6s; { E T6x, T6A, T6z, Tb6, T6y; { E T6e, T6h, T6d, T6g, TaX, T6f, T6w; T6e = rio[WS(ios, 3)]; TcV = T94 + T95; T96 = T94 - T95; T6h = iio[-WS(ios, 60)]; T6d = W[4]; T6g = W[5]; T6x = rio[WS(ios, 51)]; T6A = iio[-WS(ios, 12)]; TaX = T6d * T6h; T6f = T6d * T6e; T6w = W[100]; T6z = W[101]; TaY = FNMS(T6g, T6e, TaX); T6i = FMA(T6g, T6h, T6f); Tb6 = T6w * T6A; T6y = T6w * T6x; } { E T6k, T6n, T6j, T6m, TaZ, T6l, T6q; T6k = rio[WS(ios, 35)]; T6n = iio[-WS(ios, 28)]; Tb7 = FNMS(T6z, T6x, Tb6); T6B = FMA(T6z, T6A, T6y); T6j = W[68]; T6m = W[69]; T6r = rio[WS(ios, 19)];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -