⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hf_64.c

📁 最新的FFT程序
💻 C
📖 第 1 页 / 共 5 页
字号:
			      }			 }		    }		    {			 E T8p, T1O, T85, T27, T1X, T20, T1Z, T8r, T1U, T82, T1Y;			 {			      E T23, T26, T25, T84, T24;			      {				   E T1K, T1N, T1J, T1M, T8o, T1L, T22;				   T1K = rio[WS(ios, 2)];				   T1N = iio[-WS(ios, 61)];				   T1J = W[2];				   T1M = W[3];				   T23 = rio[WS(ios, 50)];				   T26 = iio[-WS(ios, 13)];				   T8o = T1J * T1N;				   T1L = T1J * T1K;				   T22 = W[98];				   T25 = W[99];				   T8p = FNMS(T1M, T1K, T8o);				   T1O = FMA(T1M, T1N, T1L);				   T84 = T22 * T26;				   T24 = T22 * T23;			      }			      {				   E T1Q, T1T, T1P, T1S, T8q, T1R, T1W;				   T1Q = rio[WS(ios, 34)];				   T1T = iio[-WS(ios, 29)];				   T85 = FNMS(T25, T23, T84);				   T27 = FMA(T25, T26, T24);				   T1P = W[66];				   T1S = W[67];				   T1X = rio[WS(ios, 18)];				   T20 = iio[-WS(ios, 45)];				   T8q = T1P * T1T;				   T1R = T1P * T1Q;				   T1W = W[34];				   T1Z = W[35];				   T8r = FNMS(T1S, T1Q, T8q);				   T1U = FMA(T1S, T1T, T1R);				   T82 = T1W * T20;				   T1Y = T1W * T1X;			      }			 }			 {			      E T8s, Tf8, T1V, T81, T83, T21;			      T8s = T8p - T8r;			      Tf8 = T8p + T8r;			      T1V = T1O + T1U;			      T81 = T1O - T1U;			      T83 = FNMS(T1Z, T1X, T82);			      T21 = FMA(T1Z, T20, T1Y);			      {				   E Tf9, T86, T8t, T28;				   Tf9 = T83 + T85;				   T86 = T83 - T85;				   T8t = T21 - T27;				   T28 = T21 + T27;				   T87 = T81 - T86;				   TcN = T81 + T86;				   Tfa = Tf8 - Tf9;				   Thv = Tf8 + Tf9;				   T29 = T1V + T28;				   Tf3 = T1V - T28;				   TcQ = T8s - T8t;				   T8u = T8s + T8t;			      }			 }		    }		    {			 E T7w, TU, T7G, T1d, T13, T16, T15, T7y, T10, T7D, T14;			 {			      E T19, T1c, T1b, T7F, T1a;			      {				   E TQ, TT, TP, TS, T7v, TR, T18;				   TQ = rio[WS(ios, 4)];				   TT = iio[-WS(ios, 59)];				   TP = W[6];				   TS = W[7];				   T19 = rio[WS(ios, 52)];				   T1c = iio[-WS(ios, 11)];				   T7v = TP * TT;				   TR = TP * TQ;				   T18 = W[102];				   T1b = W[103];				   T7w = FNMS(TS, TQ, T7v);				   TU = FMA(TS, TT, TR);				   T7F = T18 * T1c;				   T1a = T18 * T19;			      }			      {				   E TW, TZ, TV, TY, T7x, TX, T12;				   TW = rio[WS(ios, 36)];				   TZ = iio[-WS(ios, 27)];				   T7G = FNMS(T1b, T19, T7F);				   T1d = FMA(T1b, T1c, T1a);				   TV = W[70];				   TY = W[71];				   T13 = rio[WS(ios, 20)];				   T16 = iio[-WS(ios, 43)];				   T7x = TV * TZ;				   TX = TV * TW;				   T12 = W[38];				   T15 = W[39];				   T7y = FNMS(TY, TW, T7x);				   T10 = FMA(TY, TZ, TX);				   T7D = T12 * T16;				   T14 = T12 * T13;			      }			 }			 {			      E T7z, TeS, T11, T7C, T7E, T17;			      T7z = T7w - T7y;			      TeS = T7w + T7y;			      T11 = TU + T10;			      T7C = TU - T10;			      T7E = FNMS(T15, T13, T7D);			      T17 = FMA(T15, T16, T14);			      {				   E T7H, TeT, T7A, T1e;				   T7H = T7E - T7G;				   TeT = T7E + T7G;				   T7A = T17 - T1d;				   T1e = T17 + T1d;				   TeU = TeS - TeT;				   Thr = TeS + TeT;				   T7B = T7z + T7A;				   TcG = T7z - T7A;				   T1f = T11 + T1e;				   TeR = T11 - T1e;				   TcF = T7C + T7H;				   T7I = T7C - T7H;			      }			 }		    }	       }	       {		    E Tbl, Tbk, T8v, T8w, Tab, Tac;		    {			 E T8g, T2f, T8c, T2y, T2o, T2r, T2q, T8i, T2l, T89, T2p;			 {			      E T2u, T2x, T2w, T8b, T2v;			      {				   E T2b, T2e, T2a, T2d, T8f, T2c, T2t;				   T2b = rio[WS(ios, 10)];				   T2e = iio[-WS(ios, 53)];				   T2a = W[18];				   T2d = W[19];				   T2u = rio[WS(ios, 26)];				   T2x = iio[-WS(ios, 37)];				   T8f = T2a * T2e;				   T2c = T2a * T2b;				   T2t = W[50];				   T2w = W[51];				   T8g = FNMS(T2d, T2b, T8f);				   T2f = FMA(T2d, T2e, T2c);				   T8b = T2t * T2x;				   T2v = T2t * T2u;			      }			      {				   E T2h, T2k, T2g, T2j, T8h, T2i, T2n;				   T2h = rio[WS(ios, 42)];				   T2k = iio[-WS(ios, 21)];				   T8c = FNMS(T2w, T2u, T8b);				   T2y = FMA(T2w, T2x, T2v);				   T2g = W[82];				   T2j = W[83];				   T2o = rio[WS(ios, 58)];				   T2r = iio[-WS(ios, 5)];				   T8h = T2g * T2k;				   T2i = T2g * T2h;				   T2n = W[114];				   T2q = W[115];				   T8i = FNMS(T2j, T2h, T8h);				   T2l = FMA(T2j, T2k, T2i);				   T89 = T2n * T2r;				   T2p = T2n * T2o;			      }			 }			 {			      E T8j, Tf4, T2m, T8k, T8a, T2s, T8l, T8e;			      T8j = T8g - T8i;			      Tf4 = T8g + T8i;			      T2m = T2f + T2l;			      T8k = T2f - T2l;			      T8a = FNMS(T2q, T2o, T89);			      T2s = FMA(T2q, T2r, T2p);			      {				   E Tf5, T8d, T2z, T88;				   Tf5 = T8a + T8c;				   T8d = T8a - T8c;				   T2z = T2s + T2y;				   T88 = T2s - T2y;				   T8v = T8k + T8j;				   T8l = T8j - T8k;				   Thw = Tf4 + Tf5;				   Tf6 = Tf4 - Tf5;				   T8w = T88 - T8d;				   T8e = T88 + T8d;				   Tfb = T2z - T2m;				   T2A = T2m + T2z;			      }			      TcR = T8l + T8e;			      T8m = T8e - T8l;			 }		    }		    {			 E Taz, T5Q, Tav, T69, T5Z, T62, T61, TaB, T5W, Tas, T60;			 {			      E T65, T68, T67, Tau, T66;			      {				   E T5M, T5P, T5L, T5O, Tay, T5N, T64;				   T5M = rio[WS(ios, 7)];				   TcO = T8v + T8w;				   T8x = T8v - T8w;				   T5P = iio[-WS(ios, 56)];				   T5L = W[12];				   T5O = W[13];				   T65 = rio[WS(ios, 23)];				   T68 = iio[-WS(ios, 40)];				   Tay = T5L * T5P;				   T5N = T5L * T5M;				   T64 = W[44];				   T67 = W[45];				   Taz = FNMS(T5O, T5M, Tay);				   T5Q = FMA(T5O, T5P, T5N);				   Tau = T64 * T68;				   T66 = T64 * T65;			      }			      {				   E T5S, T5V, T5R, T5U, TaA, T5T, T5Y;				   T5S = rio[WS(ios, 39)];				   T5V = iio[-WS(ios, 24)];				   Tav = FNMS(T67, T65, Tau);				   T69 = FMA(T67, T68, T66);				   T5R = W[76];				   T5U = W[77];				   T5Z = rio[WS(ios, 55)];				   T62 = iio[-WS(ios, 8)];				   TaA = T5R * T5V;				   T5T = T5R * T5S;				   T5Y = W[108];				   T61 = W[109];				   TaB = FNMS(T5U, T5S, TaA);				   T5W = FMA(T5U, T5V, T5T);				   Tas = T5Y * T62;				   T60 = T5Y * T5Z;			      }			 }			 {			      E TaC, TfT, T5X, TaD, Tat, T63, TaE, Tax;			      TaC = Taz - TaB;			      TfT = Taz + TaB;			      T5X = T5Q + T5W;			      TaD = T5Q - T5W;			      Tat = FNMS(T61, T5Z, Tas);			      T63 = FMA(T61, T62, T60);			      {				   E TfU, Taw, T6a, Tar;				   TfU = Tat + Tav;				   Taw = Tat - Tav;				   T6a = T63 + T69;				   Tar = T63 - T69;				   Tbl = TaD + TaC;				   TaE = TaC - TaD;				   ThU = TfT + TfU;				   TfV = TfT - TfU;				   Tbk = Tar - Taw;				   Tax = Tar + Taw;				   Tgc = T6a - T5X;				   T6b = T5X + T6a;			      }			      Tdy = TaE + Tax;			      TaF = Tax - TaE;			 }		    }		    {			 E T9q, T43, T9m, T4m, T4c, T4f, T4e, T9s, T49, T9j, T4d;			 {			      E T4i, T4l, T4k, T9l, T4j;			      {				   E T3Z, T42, T3Y, T41, T9p, T40, T4h;				   T3Z = rio[WS(ios, 9)];				   Tdn = Tbl + Tbk;				   Tbm = Tbk - Tbl;				   T42 = iio[-WS(ios, 54)];				   T3Y = W[16];				   T41 = W[17];				   T4i = rio[WS(ios, 25)];				   T4l = iio[-WS(ios, 38)];				   T9p = T3Y * T42;				   T40 = T3Y * T3Z;				   T4h = W[48];				   T4k = W[49];				   T9q = FNMS(T41, T3Z, T9p);				   T43 = FMA(T41, T42, T40);				   T9l = T4h * T4l;				   T4j = T4h * T4i;			      }			      {				   E T45, T48, T44, T47, T9r, T46, T4b;				   T45 = rio[WS(ios, 41)];				   T48 = iio[-WS(ios, 22)];				   T9m = FNMS(T4k, T4i, T9l);				   T4m = FMA(T4k, T4l, T4j);				   T44 = W[80];				   T47 = W[81];				   T4c = rio[WS(ios, 57)];				   T4f = iio[-WS(ios, 6)];				   T9r = T44 * T48;				   T46 = T44 * T45;				   T4b = W[112];				   T4e = W[113];				   T9s = FNMS(T47, T45, T9r);				   T49 = FMA(T47, T48, T46);				   T9j = T4b * T4f;				   T4d = T4b * T4c;			      }			 }			 {			      E T9t, Tfs, T4a, T9u, T9k, T4g, T9v, T9o;			      T9t = T9q - T9s;			      Tfs = T9q + T9s;			      T4a = T43 + T49;			      T9u = T43 - T49;			      T9k = FNMS(T4e, T4c, T9j);			      T4g = FMA(T4e, T4f, T4d);			      {				   E Tft, T9n, T4n, T9i;				   Tft = T9k + T9m;				   T9n = T9k - T9m;				   T4n = T4g + T4m;				   T9i = T4g - T4m;				   Tab = T9u + T9t;				   T9v = T9t - T9u;				   ThI = Tfs + Tft;				   Tfu = Tfs - Tft;				   Tac = T9i - T9n;				   T9o = T9i + T9n;				   TfL = T4n - T4a;				   T4o = T4a + T4n;			      }			      Tdf = T9v + T9o;			      T9w = T9o - T9v;			 }		    }		    {			 E T8P, T38, T8L, T3r, T3h, T3k, T3j, T8R, T3e, T8I, T3i;			 {			      E T3n, T3q, T3p, T8K, T3o;			      {				   E T34, T37, T33, T36, T8O, T35, T3m;				   T34 = rio[WS(ios, 6)];				   Td4 = Tab + Tac;				   Tad = Tab - Tac;				   T37 = iio[-WS(ios, 57)];				   T33 = W[10];				   T36 = W[11];				   T3n = rio[WS(ios, 22)];				   T3q = iio[-WS(ios, 41)];				   T8O = T33 * T37;				   T35 = T33 * T34;				   T3m = W[42];				   T3p = W[43];				   T8P = FNMS(T36, T34, T8O);				   T38 = FMA(T36, T37, T35);				   T8K = T3m * T3q;				   T3o = T3m * T3n;			      }			      {				   E T3a, T3d, T39, T3c, T8Q, T3b, T3g;				   T3a = rio[WS(ios, 38)];				   T3d = iio[-WS(ios, 25)];				   T8L = FNMS(T3p, T3n, T8K);				   T3r = FMA(T3p, T3q, T3o);				   T39 = W[74];				   T3c = W[75];				   T3h = rio[WS(ios, 54)];				   T3k = iio[-WS(ios, 9)];				   T8Q = T39 * T3d;				   T3b = T39 * T3a;				   T3g = W[106];				   T3j = W[107];				   T8R = FNMS(T3c, T3a, T8Q);				   T3e = FMA(T3c, T3d, T3b);				   T8I = T3g * T3k;				   T3i = T3g * T3h;			      }			 }			 {			      E T8S, Tff, T3f, T8T, T8J, T3l, T8U, T8N;			      T8S = T8P - T8R;			      Tff = T8P + T8R;			      T3f = T38 + T3e;			      T8T = T38 - T3e;			      T8J = FNMS(T3j, T3h, T8I);			      T3l = FMA(T3j, T3k, T3i);			      {				   E Tfg, T8M, T3s, T8H;				   Tfg = T8J + T8L;				   T8M = T8J - T8L;				   T3s = T3l + T3r;				   T8H = T3l - T3r;				   T94 = T8T + T8S;				   T8U = T8S - T8T;				   ThC = Tff + Tfg;				   Tfh = Tff - Tfg;				   T95 = T8H - T8M;				   T8N = T8H + T8M;				   Tfm = T3s - T3f;				   T3t = T3f + T3s;			      }			      TcY = T8U + T8N;			      T8V = T8N - T8U;			 }		    }	       }	       {		    E Tg5, TaN, Tdt, Tg2, Tds, TaU;		    {			 E Tg0, Tb2, Tdq, TfX, Tdp, Tb9;			 {			      E TaY, T6i, Tb7, T6B, T6r, T6u, T6t, Tb0, T6o, Tb4, T6s;			      {				   E T6x, T6A, T6z, Tb6, T6y;				   {					E T6e, T6h, T6d, T6g, TaX, T6f, T6w;					T6e = rio[WS(ios, 3)];					TcV = T94 + T95;					T96 = T94 - T95;					T6h = iio[-WS(ios, 60)];					T6d = W[4];					T6g = W[5];					T6x = rio[WS(ios, 51)];					T6A = iio[-WS(ios, 12)];					TaX = T6d * T6h;					T6f = T6d * T6e;					T6w = W[100];					T6z = W[101];					TaY = FNMS(T6g, T6e, TaX);					T6i = FMA(T6g, T6h, T6f);					Tb6 = T6w * T6A;					T6y = T6w * T6x;				   }				   {					E T6k, T6n, T6j, T6m, TaZ, T6l, T6q;					T6k = rio[WS(ios, 35)];					T6n = iio[-WS(ios, 28)];					Tb7 = FNMS(T6z, T6x, Tb6);					T6B = FMA(T6z, T6A, T6y);					T6j = W[68];					T6m = W[69];					T6r = rio[WS(ios, 19)];

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -