⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hf2_32.c

📁 最新的FFT程序
💻 C
📖 第 1 页 / 共 4 页
字号:
					iio[-WS(ios, 7)] = FMA(KP980785280, T9y, T9x);					rio[WS(ios, 23)] = FMS(KP980785280, T9y, T9x);					iio[-WS(ios, 31)] = FMA(KP980785280, T7d, T7a);					rio[WS(ios, 15)] = FNMS(KP980785280, T7d, T7a);				   }			      }			 }		    }	       }	  }	  iio[-WS(ios, 15)] = FMA(KP980785280, T9A, T9z);	  rio[WS(ios, 31)] = FMS(KP980785280, T9A, T9z);     }     return W;}static const tw_instr twinstr[] = {     {TW_CEXP, 0, 1},     {TW_CEXP, 0, 3},     {TW_CEXP, 0, 9},     {TW_CEXP, 0, 27},     {TW_NEXT, 1, 0}};static const hc2hc_desc desc = { 32, "hf2_32", twinstr, &GENUS, {236, 98, 252, 0}, 0, 0, 0 };void X(codelet_hf2_32) (planner *p) {     X(khc2hc_register) (p, hf2_32, &desc);}#else				/* HAVE_FMA *//* Generated by: ../../../genfft/gen_hc2hc -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 32 -dit -name hf2_32 -include hf.h *//* * This function contains 488 FP additions, 280 FP multiplications, * (or, 376 additions, 168 multiplications, 112 fused multiply/add), * 158 stack variables, and 128 memory accesses *//* * Generator Id's :  * $Id: algsimp.ml,v 1.8 2006-01-05 03:04:27 stevenj Exp $ * $Id: fft.ml,v 1.4 2006-01-05 03:04:27 stevenj Exp $ * $Id: gen_hc2hc.ml,v 1.15 2006-01-05 03:04:27 stevenj Exp $ */#include "hf.h"static const R *hf2_32(R *rio, R *iio, const R *W, stride ios, INT m, INT dist){     DK(KP195090322, +0.195090322016128267848284868477022240927691618);     DK(KP980785280, +0.980785280403230449126182236134239036973933731);     DK(KP555570233, +0.555570233019602224742830813948532874374937191);     DK(KP831469612, +0.831469612302545237078788377617905756738560812);     DK(KP382683432, +0.382683432365089771728459984030398866761344562);     DK(KP923879532, +0.923879532511286756128183189396788286822416626);     DK(KP707106781, +0.707106781186547524400844362104849039284835938);     INT i;     for (i = m - 2; i > 0; i = i - 2, rio = rio + dist, iio = iio - dist, W = W + 8, MAKE_VOLATILE_STRIDE(ios)) {	  E T4, T7, T5, T8, Ta, TM, TO, Tf, T2, Ti, T3, Tc, TD, TH, T1y;	  E T1H, T15, T1A, T11, T1F, T1n, T1p, T2q, T2I, T2u, T2K, T2V, T3b, T2Z, T3d;	  E Tu, Ty, T3l, T3n, T1t, T1v, T2f, T2h, T1a, T1e, T32, T34, T1W, T1Y, T2C;	  E T2E, Th, TR, Tl, TS, Tm, TV, To, TT, T1M, T21, T1P, T22, T1Q, T25;	  E T1S, T23;	  {	       E TB, T13, TF, TZ, TC, T14, TG, T10, Ts, T1c, Tw, T18, Tt, T1d, Tx;	       E T19;	       {		    E T6, Te, T9, Td;		    T4 = W[2];		    T7 = W[3];		    T5 = W[0];		    T8 = W[1];		    T6 = T4 * T5;		    Te = T7 * T5;		    T9 = T7 * T8;		    Td = T4 * T8;		    Ta = T6 + T9;		    TM = T6 - T9;		    TO = Td + Te;		    Tf = Td - Te;		    T2 = W[6];		    TB = T2 * T4;		    T13 = T2 * T8;		    TF = T2 * T7;		    TZ = T2 * T5;		    Ti = W[7];		    TC = Ti * T7;		    T14 = Ti * T5;		    TG = Ti * T4;		    T10 = Ti * T8;		    T3 = W[4];		    Ts = T3 * T5;		    T1c = T3 * T7;		    Tw = T3 * T8;		    T18 = T3 * T4;		    Tc = W[5];		    Tt = Tc * T8;		    T1d = Tc * T4;		    Tx = Tc * T5;		    T19 = Tc * T7;	       }	       TD = TB + TC;	       TH = TF - TG;	       T1y = TZ + T10;	       T1H = TF + TG;	       T15 = T13 + T14;	       T1A = T13 - T14;	       T11 = TZ - T10;	       T1F = TB - TC;	       T1n = FMA(T2, T3, Ti * Tc);	       T1p = FNMS(Ti, T3, T2 * Tc);	       {		    E T2o, T2p, T2s, T2t;		    T2o = T2 * Ta;		    T2p = Ti * Tf;		    T2q = T2o - T2p;		    T2I = T2o + T2p;		    T2s = T2 * Tf;		    T2t = Ti * Ta;		    T2u = T2s + T2t;		    T2K = T2s - T2t;	       }	       {		    E T2T, T2U, T2X, T2Y;		    T2T = T2 * TM;		    T2U = Ti * TO;		    T2V = T2T - T2U;		    T3b = T2T + T2U;		    T2X = T2 * TO;		    T2Y = Ti * TM;		    T2Z = T2X + T2Y;		    T3d = T2X - T2Y;		    Tu = Ts + Tt;		    Ty = Tw - Tx;		    T3l = FNMS(Ti, Ty, T2 * Tu);		    T3n = FMA(T2, Ty, Ti * Tu);	       }	       T1t = Ts - Tt;	       T1v = Tw + Tx;	       T2f = FMA(T2, T1t, Ti * T1v);	       T2h = FNMS(Ti, T1t, T2 * T1v);	       T1a = T18 - T19;	       T1e = T1c + T1d;	       T32 = FMA(T2, T1a, Ti * T1e);	       T34 = FNMS(Ti, T1a, T2 * T1e);	       T1W = T18 + T19;	       T1Y = T1c - T1d;	       T2C = FNMS(Ti, T1Y, T2 * T1W);	       T2E = FMA(T2, T1Y, Ti * T1W);	       {		    E Tb, Tg, Tj, Tk;		    Tb = T3 * Ta;		    Tg = Tc * Tf;		    Th = Tb + Tg;		    TR = Tb - Tg;		    Tj = T3 * Tf;		    Tk = Tc * Ta;		    Tl = Tj - Tk;		    TS = Tj + Tk;	       }	       Tm = FNMS(Ti, Tl, T2 * Th);	       TV = FNMS(Ti, TR, T2 * TS);	       To = FMA(T2, Tl, Ti * Th);	       TT = FMA(T2, TR, Ti * TS);	       {		    E T1K, T1L, T1N, T1O;		    T1K = T3 * TM;		    T1L = Tc * TO;		    T1M = T1K - T1L;		    T21 = T1K + T1L;		    T1N = T3 * TO;		    T1O = Tc * TM;		    T1P = T1N + T1O;		    T22 = T1N - T1O;	       }	       T1Q = FMA(T2, T1M, Ti * T1P);	       T25 = FMA(T2, T22, Ti * T21);	       T1S = FNMS(Ti, T1M, T2 * T1P);	       T23 = FNMS(Ti, T22, T2 * T21);	  }	  {	       E TL, T6f, T8c, T8q, T3F, T5t, T7I, T7W, T3h, T6H, T6O, T7o, T4L, T5N, T52;	       E T5Q, T1i, T7V, T6i, T7D, T3K, T5u, T3P, T5v, T2y, T6B, T6y, T7j, T4k, T5J;	       E T4B, T5G, T29, T6p, T6s, T7f, T47, T5B, T4c, T5C, T1E, T6n, T6m, T7e, T3W;	       E T5y, T41, T5z, T2R, T6z, T6E, T7k, T4v, T5H, T4E, T5K, T3y, T6P, T6K, T7p;	       E T4W, T5R, T55, T5O;	       {		    E T1, T7G, Tq, T7F, TA, T3C, TJ, T3D, Tn, Tp;		    T1 = rio[0];		    T7G = iio[-WS(ios, 31)];		    Tn = rio[WS(ios, 16)];		    Tp = iio[-WS(ios, 15)];		    Tq = FMA(Tm, Tn, To * Tp);		    T7F = FNMS(To, Tn, Tm * Tp);		    {			 E Tv, Tz, TE, TI;			 Tv = rio[WS(ios, 8)];			 Tz = iio[-WS(ios, 23)];			 TA = FNMS(Ty, Tz, Tu * Tv);			 T3C = FMA(Ty, Tv, Tu * Tz);			 TE = rio[WS(ios, 24)];			 TI = iio[-WS(ios, 7)];			 TJ = FNMS(TH, TI, TD * TE);			 T3D = FMA(TH, TE, TD * TI);		    }		    {			 E Tr, TK, T8a, T8b;			 Tr = T1 + Tq;			 TK = TA + TJ;			 TL = Tr + TK;			 T6f = Tr - TK;			 T8a = T7G - T7F;			 T8b = TA - TJ;			 T8c = T8a - T8b;			 T8q = T8b + T8a;		    }		    {			 E T3B, T3E, T7E, T7H;			 T3B = T1 - Tq;			 T3E = T3C - T3D;			 T3F = T3B - T3E;			 T5t = T3B + T3E;			 T7E = T3C + T3D;			 T7H = T7F + T7G;			 T7I = T7E + T7H;			 T7W = T7H - T7E;		    }	       }	       {		    E T31, T4Y, T3f, T4J, T36, T4Z, T3a, T4I;		    {			 E T2W, T30, T3c, T3e;			 T2W = rio[WS(ios, 31)];			 T30 = iio[0];			 T31 = FMA(T2V, T2W, T2Z * T30);			 T4Y = FNMS(T2Z, T2W, T2V * T30);			 T3c = rio[WS(ios, 23)];			 T3e = iio[-WS(ios, 8)];			 T3f = FNMS(T3d, T3e, T3b * T3c);			 T4J = FMA(T3d, T3c, T3b * T3e);		    }		    {			 E T33, T35, T38, T39;			 T33 = rio[WS(ios, 15)];			 T35 = iio[-WS(ios, 16)];			 T36 = FNMS(T34, T35, T32 * T33);			 T4Z = FMA(T34, T33, T32 * T35);			 T38 = rio[WS(ios, 7)];			 T39 = iio[-WS(ios, 24)];			 T3a = FMA(TR, T38, TS * T39);			 T4I = FNMS(TS, T38, TR * T39);		    }		    {			 E T37, T3g, T6M, T6N;			 T37 = T31 + T36;			 T3g = T3a + T3f;			 T3h = T37 + T3g;			 T6H = T37 - T3g;			 T6M = T4Y + T4Z;			 T6N = T4I + T4J;			 T6O = T6M - T6N;			 T7o = T6M + T6N;		    }		    {			 E T4H, T4K, T50, T51;			 T4H = T31 - T36;			 T4K = T4I - T4J;			 T4L = T4H - T4K;			 T5N = T4H + T4K;			 T50 = T4Y - T4Z;			 T51 = T3a - T3f;			 T52 = T50 + T51;			 T5Q = T50 - T51;		    }	       }	       {		    E TQ, T3G, T1g, T3N, TX, T3H, T17, T3M;		    {			 E TN, TP, T1b, T1f;			 TN = rio[WS(ios, 4)];			 TP = iio[-WS(ios, 27)];			 TQ = FMA(TM, TN, TO * TP);			 T3G = FNMS(TO, TN, TM * TP);			 T1b = rio[WS(ios, 12)];			 T1f = iio[-WS(ios, 19)];			 T1g = FMA(T1a, T1b, T1e * T1f);			 T3N = FNMS(T1e, T1b, T1a * T1f);		    }		    {			 E TU, TW, T12, T16;			 TU = rio[WS(ios, 20)];			 TW = iio[-WS(ios, 11)];			 TX = FNMS(TV, TW, TT * TU);			 T3H = FMA(TV, TU, TT * TW);			 T12 = rio[WS(ios, 28)];			 T16 = iio[-WS(ios, 3)];			 T17 = FMA(T11, T12, T15 * T16);			 T3M = FNMS(T15, T12, T11 * T16);		    }		    {			 E TY, T1h, T6g, T6h;			 TY = TQ + TX;			 T1h = T17 + T1g;			 T1i = TY + T1h;			 T7V = T1h - TY;			 T6g = T3G + T3H;			 T6h = T3M + T3N;			 T6i = T6g - T6h;			 T7D = T6g + T6h;		    }		    {			 E T3I, T3J, T3L, T3O;			 T3I = T3G - T3H;			 T3J = TQ - TX;			 T3K = T3I - T3J;			 T5u = T3J + T3I;			 T3L = T17 - T1g;			 T3O = T3M - T3N;			 T3P = T3L + T3O;			 T5v = T3L - T3O;		    }	       }	       {		    E T2e, T4g, T2w, T4z, T2j, T4h, T2n, T4y;		    {			 E T2c, T2d, T2r, T2v;			 T2c = rio[WS(ios, 1)];			 T2d = iio[-WS(ios, 30)];			 T2e = FMA(T5, T2c, T8 * T2d);			 T4g = FNMS(T8, T2c, T5 * T2d);			 T2r = rio[WS(ios, 25)];			 T2v = iio[-WS(ios, 6)];			 T2w = FMA(T2q, T2r, T2u * T2v);			 T4z = FNMS(T2u, T2r, T2q * T2v);		    }		    {			 E T2g, T2i, T2l, T2m;			 T2g = rio[WS(ios, 17)];			 T2i = iio[-WS(ios, 14)];			 T2j = FNMS(T2h, T2i, T2f * T2g);			 T4h = FMA(T2h, T2g, T2f * T2i);			 T2l = rio[WS(ios, 9)];			 T2m = iio[-WS(ios, 22)];			 T2n = FMA(T3, T2l, Tc * T2m);			 T4y = FNMS(Tc, T2l, T3 * T2m);		    }		    {			 E T2k, T2x, T6w, T6x;			 T2k = T2e + T2j;			 T2x = T2n + T2w;			 T2y = T2k + T2x;			 T6B = T2k - T2x;			 T6w = T4g + T4h;			 T6x = T4y + T4z;			 T6y = T6w - T6x;			 T7j = T6w + T6x;		    }		    {			 E T4i, T4j, T4x, T4A;			 T4i = T4g - T4h;			 T4j = T2n - T2w;			 T4k = T4i + T4j;			 T5J = T4i - T4j;			 T4x = T2e - T2j;			 T4A = T4y - T4z;			 T4B = T4x - T4A;			 T5G = T4x + T4A;		    }	       }	       {		    E T1J, T43, T27, T4a, T1U, T44, T20, T49;		    {			 E T1G, T1I, T24, T26;			 T1G = rio[WS(ios, 30)];			 T1I = iio[-WS(ios, 1)];			 T1J = FMA(T1F, T1G, T1H * T1I);			 T43 = FNMS(T1H, T1G, T1F * T1I);			 T24 = rio[WS(ios, 22)];			 T26 = iio[-WS(ios, 9)];			 T27 = FMA(T23, T24, T25 * T26);			 T4a = FNMS(T25, T24, T23 * T26);		    }		    {			 E T1R, T1T, T1X, T1Z;			 T1R = rio[WS(ios, 14)];			 T1T = iio[-WS(ios, 17)];			 T1U = FNMS(T1S, T1T, T1Q * T1R);			 T44 = FMA(T1S, T1R, T1Q * T1T);			 T1X = rio[WS(ios, 6)];			 T1Z = iio[-WS(ios, 25)];			 T20 = FNMS(T1Y, T1Z, T1W * T1X);			 T49 = FMA(T1Y, T1X, T1W * T1Z);		    }		    {			 E T1V, T28, T6q, T6r;			 T1V = T1J + T1U;			 T28 = T20 + T27;			 T29 = T1V + T28;			 T6p = T1V - T28;			 T6q = T43 + T44;			 T6r = T49 + T4a;			 T6s = T6q - T6r;			 T7f = T6q + T6r;		    }		    {			 E T45, T46, T48, T4b;			 T45 = T43 - T44;			 T46 = T20 - T27;			 T47 = T45 + T46;			 T5B = T45 - T46;			 T48 = T1J - T1U;			 T4b = T49 - T4a;			 T4c = T48 - T4b;			 T5C = T48 + T4b;		    }	       }	       {		    E T1m, T3S, T1C, T3Z, T1r, T3T, T1x, T3Y;		    {			 E T1k, T1l, T1z, T1B;			 T1k = rio[WS(ios, 2)];			 T1l = iio[-WS(ios, 29)];			 T1m = FNMS(Tf, T1l, Ta * T1k);			 T3S = FMA(Tf, T1k, Ta * T1l);			 T1z = rio[WS(ios, 26)];			 T1B = iio[-WS(ios, 5)];			 T1C = FNMS(T1A, T1B, T1y * T1z);			 T3Z = FMA(T1A, T1z, T1y * T1B);		    }		    {			 E T1o, T1q, T1u, T1w;			 T1o = rio[WS(ios, 18)];			 T1q = iio[-WS(ios, 13)];			 T1r = FNMS(T1p, T1q, T1n * T1o);			 T3T = FMA(T1p, T1o, T1n * T1q);			 T1u = rio[WS(ios, 10)];			 T1w = iio[-WS(ios, 21)];			 T1x = FMA(T1t, T1u, T1v * T1w);			 T3Y = FNMS(T1v, T1u, T1t * T1w);		    }		    {			 E T1s, T1D, T6k, T6l;			 T1s = T1m + T1r;			 T1D = T1x + T1C;			 T1E = T1s + T1D;			 T6n = T1s - T1D;			 T6k = T3S + T3T;			 T6l = T3Y + T3Z;			 T6m = T6k - T6l;			 T7e = T6k + T6l;		    }		    {			 E T3U, T3V, T3X, T40;			 T3U = T3S - T3T;			 T3V = T1x - T1C;			 T3W = T3U + T3V;			 T5y = T3U - T3V;			 T3X = T1m - T1r;			 T40 = T3Y - T3Z;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -