📄 hf2_32.c
字号:
iio[-WS(ios, 7)] = FMA(KP980785280, T9y, T9x); rio[WS(ios, 23)] = FMS(KP980785280, T9y, T9x); iio[-WS(ios, 31)] = FMA(KP980785280, T7d, T7a); rio[WS(ios, 15)] = FNMS(KP980785280, T7d, T7a); } } } } } } iio[-WS(ios, 15)] = FMA(KP980785280, T9A, T9z); rio[WS(ios, 31)] = FMS(KP980785280, T9A, T9z); } return W;}static const tw_instr twinstr[] = { {TW_CEXP, 0, 1}, {TW_CEXP, 0, 3}, {TW_CEXP, 0, 9}, {TW_CEXP, 0, 27}, {TW_NEXT, 1, 0}};static const hc2hc_desc desc = { 32, "hf2_32", twinstr, &GENUS, {236, 98, 252, 0}, 0, 0, 0 };void X(codelet_hf2_32) (planner *p) { X(khc2hc_register) (p, hf2_32, &desc);}#else /* HAVE_FMA *//* Generated by: ../../../genfft/gen_hc2hc -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 32 -dit -name hf2_32 -include hf.h *//* * This function contains 488 FP additions, 280 FP multiplications, * (or, 376 additions, 168 multiplications, 112 fused multiply/add), * 158 stack variables, and 128 memory accesses *//* * Generator Id's : * $Id: algsimp.ml,v 1.8 2006-01-05 03:04:27 stevenj Exp $ * $Id: fft.ml,v 1.4 2006-01-05 03:04:27 stevenj Exp $ * $Id: gen_hc2hc.ml,v 1.15 2006-01-05 03:04:27 stevenj Exp $ */#include "hf.h"static const R *hf2_32(R *rio, R *iio, const R *W, stride ios, INT m, INT dist){ DK(KP195090322, +0.195090322016128267848284868477022240927691618); DK(KP980785280, +0.980785280403230449126182236134239036973933731); DK(KP555570233, +0.555570233019602224742830813948532874374937191); DK(KP831469612, +0.831469612302545237078788377617905756738560812); DK(KP382683432, +0.382683432365089771728459984030398866761344562); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP707106781, +0.707106781186547524400844362104849039284835938); INT i; for (i = m - 2; i > 0; i = i - 2, rio = rio + dist, iio = iio - dist, W = W + 8, MAKE_VOLATILE_STRIDE(ios)) { E T4, T7, T5, T8, Ta, TM, TO, Tf, T2, Ti, T3, Tc, TD, TH, T1y; E T1H, T15, T1A, T11, T1F, T1n, T1p, T2q, T2I, T2u, T2K, T2V, T3b, T2Z, T3d; E Tu, Ty, T3l, T3n, T1t, T1v, T2f, T2h, T1a, T1e, T32, T34, T1W, T1Y, T2C; E T2E, Th, TR, Tl, TS, Tm, TV, To, TT, T1M, T21, T1P, T22, T1Q, T25; E T1S, T23; { E TB, T13, TF, TZ, TC, T14, TG, T10, Ts, T1c, Tw, T18, Tt, T1d, Tx; E T19; { E T6, Te, T9, Td; T4 = W[2]; T7 = W[3]; T5 = W[0]; T8 = W[1]; T6 = T4 * T5; Te = T7 * T5; T9 = T7 * T8; Td = T4 * T8; Ta = T6 + T9; TM = T6 - T9; TO = Td + Te; Tf = Td - Te; T2 = W[6]; TB = T2 * T4; T13 = T2 * T8; TF = T2 * T7; TZ = T2 * T5; Ti = W[7]; TC = Ti * T7; T14 = Ti * T5; TG = Ti * T4; T10 = Ti * T8; T3 = W[4]; Ts = T3 * T5; T1c = T3 * T7; Tw = T3 * T8; T18 = T3 * T4; Tc = W[5]; Tt = Tc * T8; T1d = Tc * T4; Tx = Tc * T5; T19 = Tc * T7; } TD = TB + TC; TH = TF - TG; T1y = TZ + T10; T1H = TF + TG; T15 = T13 + T14; T1A = T13 - T14; T11 = TZ - T10; T1F = TB - TC; T1n = FMA(T2, T3, Ti * Tc); T1p = FNMS(Ti, T3, T2 * Tc); { E T2o, T2p, T2s, T2t; T2o = T2 * Ta; T2p = Ti * Tf; T2q = T2o - T2p; T2I = T2o + T2p; T2s = T2 * Tf; T2t = Ti * Ta; T2u = T2s + T2t; T2K = T2s - T2t; } { E T2T, T2U, T2X, T2Y; T2T = T2 * TM; T2U = Ti * TO; T2V = T2T - T2U; T3b = T2T + T2U; T2X = T2 * TO; T2Y = Ti * TM; T2Z = T2X + T2Y; T3d = T2X - T2Y; Tu = Ts + Tt; Ty = Tw - Tx; T3l = FNMS(Ti, Ty, T2 * Tu); T3n = FMA(T2, Ty, Ti * Tu); } T1t = Ts - Tt; T1v = Tw + Tx; T2f = FMA(T2, T1t, Ti * T1v); T2h = FNMS(Ti, T1t, T2 * T1v); T1a = T18 - T19; T1e = T1c + T1d; T32 = FMA(T2, T1a, Ti * T1e); T34 = FNMS(Ti, T1a, T2 * T1e); T1W = T18 + T19; T1Y = T1c - T1d; T2C = FNMS(Ti, T1Y, T2 * T1W); T2E = FMA(T2, T1Y, Ti * T1W); { E Tb, Tg, Tj, Tk; Tb = T3 * Ta; Tg = Tc * Tf; Th = Tb + Tg; TR = Tb - Tg; Tj = T3 * Tf; Tk = Tc * Ta; Tl = Tj - Tk; TS = Tj + Tk; } Tm = FNMS(Ti, Tl, T2 * Th); TV = FNMS(Ti, TR, T2 * TS); To = FMA(T2, Tl, Ti * Th); TT = FMA(T2, TR, Ti * TS); { E T1K, T1L, T1N, T1O; T1K = T3 * TM; T1L = Tc * TO; T1M = T1K - T1L; T21 = T1K + T1L; T1N = T3 * TO; T1O = Tc * TM; T1P = T1N + T1O; T22 = T1N - T1O; } T1Q = FMA(T2, T1M, Ti * T1P); T25 = FMA(T2, T22, Ti * T21); T1S = FNMS(Ti, T1M, T2 * T1P); T23 = FNMS(Ti, T22, T2 * T21); } { E TL, T6f, T8c, T8q, T3F, T5t, T7I, T7W, T3h, T6H, T6O, T7o, T4L, T5N, T52; E T5Q, T1i, T7V, T6i, T7D, T3K, T5u, T3P, T5v, T2y, T6B, T6y, T7j, T4k, T5J; E T4B, T5G, T29, T6p, T6s, T7f, T47, T5B, T4c, T5C, T1E, T6n, T6m, T7e, T3W; E T5y, T41, T5z, T2R, T6z, T6E, T7k, T4v, T5H, T4E, T5K, T3y, T6P, T6K, T7p; E T4W, T5R, T55, T5O; { E T1, T7G, Tq, T7F, TA, T3C, TJ, T3D, Tn, Tp; T1 = rio[0]; T7G = iio[-WS(ios, 31)]; Tn = rio[WS(ios, 16)]; Tp = iio[-WS(ios, 15)]; Tq = FMA(Tm, Tn, To * Tp); T7F = FNMS(To, Tn, Tm * Tp); { E Tv, Tz, TE, TI; Tv = rio[WS(ios, 8)]; Tz = iio[-WS(ios, 23)]; TA = FNMS(Ty, Tz, Tu * Tv); T3C = FMA(Ty, Tv, Tu * Tz); TE = rio[WS(ios, 24)]; TI = iio[-WS(ios, 7)]; TJ = FNMS(TH, TI, TD * TE); T3D = FMA(TH, TE, TD * TI); } { E Tr, TK, T8a, T8b; Tr = T1 + Tq; TK = TA + TJ; TL = Tr + TK; T6f = Tr - TK; T8a = T7G - T7F; T8b = TA - TJ; T8c = T8a - T8b; T8q = T8b + T8a; } { E T3B, T3E, T7E, T7H; T3B = T1 - Tq; T3E = T3C - T3D; T3F = T3B - T3E; T5t = T3B + T3E; T7E = T3C + T3D; T7H = T7F + T7G; T7I = T7E + T7H; T7W = T7H - T7E; } } { E T31, T4Y, T3f, T4J, T36, T4Z, T3a, T4I; { E T2W, T30, T3c, T3e; T2W = rio[WS(ios, 31)]; T30 = iio[0]; T31 = FMA(T2V, T2W, T2Z * T30); T4Y = FNMS(T2Z, T2W, T2V * T30); T3c = rio[WS(ios, 23)]; T3e = iio[-WS(ios, 8)]; T3f = FNMS(T3d, T3e, T3b * T3c); T4J = FMA(T3d, T3c, T3b * T3e); } { E T33, T35, T38, T39; T33 = rio[WS(ios, 15)]; T35 = iio[-WS(ios, 16)]; T36 = FNMS(T34, T35, T32 * T33); T4Z = FMA(T34, T33, T32 * T35); T38 = rio[WS(ios, 7)]; T39 = iio[-WS(ios, 24)]; T3a = FMA(TR, T38, TS * T39); T4I = FNMS(TS, T38, TR * T39); } { E T37, T3g, T6M, T6N; T37 = T31 + T36; T3g = T3a + T3f; T3h = T37 + T3g; T6H = T37 - T3g; T6M = T4Y + T4Z; T6N = T4I + T4J; T6O = T6M - T6N; T7o = T6M + T6N; } { E T4H, T4K, T50, T51; T4H = T31 - T36; T4K = T4I - T4J; T4L = T4H - T4K; T5N = T4H + T4K; T50 = T4Y - T4Z; T51 = T3a - T3f; T52 = T50 + T51; T5Q = T50 - T51; } } { E TQ, T3G, T1g, T3N, TX, T3H, T17, T3M; { E TN, TP, T1b, T1f; TN = rio[WS(ios, 4)]; TP = iio[-WS(ios, 27)]; TQ = FMA(TM, TN, TO * TP); T3G = FNMS(TO, TN, TM * TP); T1b = rio[WS(ios, 12)]; T1f = iio[-WS(ios, 19)]; T1g = FMA(T1a, T1b, T1e * T1f); T3N = FNMS(T1e, T1b, T1a * T1f); } { E TU, TW, T12, T16; TU = rio[WS(ios, 20)]; TW = iio[-WS(ios, 11)]; TX = FNMS(TV, TW, TT * TU); T3H = FMA(TV, TU, TT * TW); T12 = rio[WS(ios, 28)]; T16 = iio[-WS(ios, 3)]; T17 = FMA(T11, T12, T15 * T16); T3M = FNMS(T15, T12, T11 * T16); } { E TY, T1h, T6g, T6h; TY = TQ + TX; T1h = T17 + T1g; T1i = TY + T1h; T7V = T1h - TY; T6g = T3G + T3H; T6h = T3M + T3N; T6i = T6g - T6h; T7D = T6g + T6h; } { E T3I, T3J, T3L, T3O; T3I = T3G - T3H; T3J = TQ - TX; T3K = T3I - T3J; T5u = T3J + T3I; T3L = T17 - T1g; T3O = T3M - T3N; T3P = T3L + T3O; T5v = T3L - T3O; } } { E T2e, T4g, T2w, T4z, T2j, T4h, T2n, T4y; { E T2c, T2d, T2r, T2v; T2c = rio[WS(ios, 1)]; T2d = iio[-WS(ios, 30)]; T2e = FMA(T5, T2c, T8 * T2d); T4g = FNMS(T8, T2c, T5 * T2d); T2r = rio[WS(ios, 25)]; T2v = iio[-WS(ios, 6)]; T2w = FMA(T2q, T2r, T2u * T2v); T4z = FNMS(T2u, T2r, T2q * T2v); } { E T2g, T2i, T2l, T2m; T2g = rio[WS(ios, 17)]; T2i = iio[-WS(ios, 14)]; T2j = FNMS(T2h, T2i, T2f * T2g); T4h = FMA(T2h, T2g, T2f * T2i); T2l = rio[WS(ios, 9)]; T2m = iio[-WS(ios, 22)]; T2n = FMA(T3, T2l, Tc * T2m); T4y = FNMS(Tc, T2l, T3 * T2m); } { E T2k, T2x, T6w, T6x; T2k = T2e + T2j; T2x = T2n + T2w; T2y = T2k + T2x; T6B = T2k - T2x; T6w = T4g + T4h; T6x = T4y + T4z; T6y = T6w - T6x; T7j = T6w + T6x; } { E T4i, T4j, T4x, T4A; T4i = T4g - T4h; T4j = T2n - T2w; T4k = T4i + T4j; T5J = T4i - T4j; T4x = T2e - T2j; T4A = T4y - T4z; T4B = T4x - T4A; T5G = T4x + T4A; } } { E T1J, T43, T27, T4a, T1U, T44, T20, T49; { E T1G, T1I, T24, T26; T1G = rio[WS(ios, 30)]; T1I = iio[-WS(ios, 1)]; T1J = FMA(T1F, T1G, T1H * T1I); T43 = FNMS(T1H, T1G, T1F * T1I); T24 = rio[WS(ios, 22)]; T26 = iio[-WS(ios, 9)]; T27 = FMA(T23, T24, T25 * T26); T4a = FNMS(T25, T24, T23 * T26); } { E T1R, T1T, T1X, T1Z; T1R = rio[WS(ios, 14)]; T1T = iio[-WS(ios, 17)]; T1U = FNMS(T1S, T1T, T1Q * T1R); T44 = FMA(T1S, T1R, T1Q * T1T); T1X = rio[WS(ios, 6)]; T1Z = iio[-WS(ios, 25)]; T20 = FNMS(T1Y, T1Z, T1W * T1X); T49 = FMA(T1Y, T1X, T1W * T1Z); } { E T1V, T28, T6q, T6r; T1V = T1J + T1U; T28 = T20 + T27; T29 = T1V + T28; T6p = T1V - T28; T6q = T43 + T44; T6r = T49 + T4a; T6s = T6q - T6r; T7f = T6q + T6r; } { E T45, T46, T48, T4b; T45 = T43 - T44; T46 = T20 - T27; T47 = T45 + T46; T5B = T45 - T46; T48 = T1J - T1U; T4b = T49 - T4a; T4c = T48 - T4b; T5C = T48 + T4b; } } { E T1m, T3S, T1C, T3Z, T1r, T3T, T1x, T3Y; { E T1k, T1l, T1z, T1B; T1k = rio[WS(ios, 2)]; T1l = iio[-WS(ios, 29)]; T1m = FNMS(Tf, T1l, Ta * T1k); T3S = FMA(Tf, T1k, Ta * T1l); T1z = rio[WS(ios, 26)]; T1B = iio[-WS(ios, 5)]; T1C = FNMS(T1A, T1B, T1y * T1z); T3Z = FMA(T1A, T1z, T1y * T1B); } { E T1o, T1q, T1u, T1w; T1o = rio[WS(ios, 18)]; T1q = iio[-WS(ios, 13)]; T1r = FNMS(T1p, T1q, T1n * T1o); T3T = FMA(T1p, T1o, T1n * T1q); T1u = rio[WS(ios, 10)]; T1w = iio[-WS(ios, 21)]; T1x = FMA(T1t, T1u, T1v * T1w); T3Y = FNMS(T1v, T1u, T1t * T1w); } { E T1s, T1D, T6k, T6l; T1s = T1m + T1r; T1D = T1x + T1C; T1E = T1s + T1D; T6n = T1s - T1D; T6k = T3S + T3T; T6l = T3Y + T3Z; T6m = T6k - T6l; T7e = T6k + T6l; } { E T3U, T3V, T3X, T40; T3U = T3S - T3T; T3V = T1x - T1C; T3W = T3U + T3V; T5y = T3U - T3V; T3X = T1m - T1r; T40 = T3Y - T3Z;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -