📄 t2_16.c
字号:
/* * Copyright (c) 2003, 2006 Matteo Frigo * Copyright (c) 2003, 2006 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Fri Jan 27 19:31:23 EST 2006 */#include "codelet-dft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_twiddle -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 16 -name t2_16 -include t.h *//* * This function contains 196 FP additions, 134 FP multiplications, * (or, 104 additions, 42 multiplications, 92 fused multiply/add), * 116 stack variables, and 64 memory accesses *//* * Generator Id's : * $Id: algsimp.ml,v 1.8 2006-01-05 03:04:27 stevenj Exp $ * $Id: fft.ml,v 1.4 2006-01-05 03:04:27 stevenj Exp $ * $Id: gen_twiddle.ml,v 1.23 2006-01-05 03:04:27 stevenj Exp $ */#include "t.h"static const R *t2_16(R *ri, R *ii, const R *W, stride ios, INT m, INT dist){ DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP414213562, +0.414213562373095048801688724209698078569671875); DK(KP707106781, +0.707106781186547524400844362104849039284835938); INT i; for (i = m; i > 0; i = i - 1, ri = ri + dist, ii = ii + dist, W = W + 8, MAKE_VOLATILE_STRIDE(ios)) { E T3S, T3R; { E T3, T6, Tf, TM, T2, Th, T4, Tp, Tt, Ta, Tz, Ti, Tm, TC, TO; E T1e, T1C, T1i, TT, TP, T1y, T5; { E TS, TN, Tl, Tg; T3 = W[0]; T6 = W[1]; Tf = W[2]; TM = W[6]; T2 = W[4]; Th = W[3]; Tl = Tf * T6; Tg = Tf * T3; TS = TM * T6; TN = TM * T3; T4 = T2 * T3; Tp = T2 * Tf; Tt = T2 * Th; Ta = T2 * T6; Tz = FMA(Th, T6, Tg); Ti = FNMS(Th, T6, Tg); Tm = FMA(Th, T3, Tl); TC = FNMS(Th, T3, Tl); TO = W[7]; T1e = T2 * Ti; T1C = T2 * TC; T1i = T2 * Tm; TT = FNMS(TO, T3, TS); TP = FMA(TO, T6, TN); T1y = T2 * Tz; T5 = W[5]; } { E TW, TZ, T3L, T3A, T1U, Te, T2D, T1G, T3h, T2A, T3i, T2I, T2B, T1R, T3M; E Tx, T3w, T1Z, TL, T26, T25, T37, T1d, T2o, T2l, T3c, T10, T2m, T1s, T3d; E T2t, TX, TV, T2a; { E T1m, T1f, T1p, T1j, TI, Tu, TF, Tr, Tv, To, T1W, Ts, T1X; { E Tq, T1L, T1O, T1x, T1F, T2x, T2z; { E T1, T3z, Tc, Tb, T7, T1z, T1D, T8; T1 = ri[0]; T3z = ii[0]; Tc = ii[WS(ios, 8)]; T1m = FNMS(T5, Tm, T1e); T1f = FMA(T5, Tm, T1e); T1p = FMA(T5, Ti, T1i); T1j = FNMS(T5, Ti, T1i); TW = FMA(T5, Th, Tp); Tq = FNMS(T5, Th, Tp); Tb = FNMS(T5, T3, Ta); TI = FMA(T5, T3, Ta); TZ = FNMS(T5, Tf, Tt); Tu = FMA(T5, Tf, Tt); T7 = FMA(T5, T6, T4); TF = FNMS(T5, T6, T4); T1L = FMA(T5, TC, T1y); T1z = FNMS(T5, TC, T1y); T1O = FNMS(T5, Tz, T1C); T1D = FMA(T5, Tz, T1C); T8 = ri[WS(ios, 8)]; { E T1u, T1w, T1A, T1v, T2w, T1B, T1E, T2y; T1u = ri[WS(ios, 15)]; T1w = ii[WS(ios, 15)]; { E T3y, Td, T3x, T9; T1A = ri[WS(ios, 7)]; T3x = Tb * T8; T9 = T7 * T8; T1v = TM * T1u; T2w = TM * T1w; T3y = FMA(T7, Tc, T3x); Td = FNMS(Tb, Tc, T9); T1B = T1z * T1A; T1E = ii[WS(ios, 7)]; T3L = T3z - T3y; T3A = T3y + T3z; T1U = T1 - Td; Te = T1 + Td; T2y = T1z * T1E; } T1x = FMA(TO, T1w, T1v); T1F = FMA(T1D, T1E, T1B); T2x = FNMS(TO, T1u, T2w); T2z = FNMS(T1D, T1A, T2y); } } { E T1P, T1J, T1H, T1M; T1P = ii[WS(ios, 11)]; T2D = T1x - T1F; T1G = T1x + T1F; T3h = T2x + T2z; T2A = T2x - T2z; T1J = ii[WS(ios, 3)]; T1H = ri[WS(ios, 3)]; T1M = ri[WS(ios, 11)]; { E Tj, Tk, Tn, T1V; { E T2F, T1K, T2H, T1Q; Tj = ri[WS(ios, 4)]; { E T2E, T1I, T2G, T1N; T2E = Tf * T1J; T1I = Tf * T1H; T2G = T1O * T1M; T1N = T1L * T1M; T2F = FNMS(Th, T1H, T2E); T1K = FMA(Th, T1J, T1I); T2H = FMA(T1L, T1P, T2G); T1Q = FNMS(T1O, T1P, T1N); Tk = Ti * Tj; } Tn = ii[WS(ios, 4)]; T3i = T2F + T2H; T2I = T2F - T2H; T2B = T1K - T1Q; T1R = T1K + T1Q; T1V = Ti * Tn; } Tr = ri[WS(ios, 12)]; Tv = ii[WS(ios, 12)]; To = FMA(Tm, Tn, Tk); T1W = FNMS(Tm, Tj, T1V); Ts = Tq * Tr; T1X = Tq * Tv; } } } { E T18, T2i, T1c, T2k; { E TG, TH, TJ, TE, T22; { E TD, T21, TB, TA, Tw, T1Y; TD = ii[WS(ios, 2)]; TA = ri[WS(ios, 2)]; Tw = FMA(Tu, Tv, Ts); T1Y = FNMS(Tu, Tr, T1X); TG = ri[WS(ios, 10)]; T21 = TC * TA; TB = Tz * TA; T3M = To - Tw; Tx = To + Tw; T3w = T1W + T1Y; T1Z = T1W - T1Y; TH = TF * TG; TJ = ii[WS(ios, 10)]; TE = FNMS(TC, TD, TB); T22 = FMA(Tz, TD, T21); } { E T15, T17, T16, T2h, T19, T1b, T1a, T2j, T24, TK, T23; T15 = ri[WS(ios, 1)]; TK = FMA(TI, TJ, TH); T23 = TF * TJ; T17 = ii[WS(ios, 1)]; T16 = T3 * T15; TL = TE + TK; T26 = TE - TK; T24 = FNMS(TI, TG, T23); T2h = T3 * T17; T19 = ri[WS(ios, 9)]; T1b = ii[WS(ios, 9)]; T25 = T22 - T24; T37 = T22 + T24; T1a = T2 * T19; T2j = T2 * T1b; T18 = FMA(T6, T17, T16); T2i = FNMS(T6, T15, T2h); T1c = FMA(T5, T1b, T1a); T2k = FNMS(T5, T19, T2j); } } { E T1n, T1q, T1l, T2q, T1o, T2r; { E T1k, T1h, T2p, T1g; T1k = ii[WS(ios, 5)]; T1g = ri[WS(ios, 5)]; T1d = T18 + T1c; T2o = T18 - T1c; T2l = T2i - T2k; T3c = T2i + T2k; T1h = T1f * T1g; T2p = T1j * T1g; T1n = ri[WS(ios, 13)]; T1q = ii[WS(ios, 13)]; T1l = FNMS(T1j, T1k, T1h); T2q = FMA(T1f, T1k, T2p); T1o = T1m * T1n; T2r = T1m * T1q; } { E TU, T29, TR, TQ, T1r, T2s; TU = ii[WS(ios, 14)]; TQ = ri[WS(ios, 14)]; T1r = FMA(T1p, T1q, T1o); T2s = FNMS(T1p, T1n, T2r); T10 = ii[WS(ios, 6)]; T29 = TT * TQ; TR = TP * TQ; T2m = T1l - T1r; T1s = T1l + T1r; T3d = T2q + T2s; T2t = T2q - T2s; TX = ri[WS(ios, 6)]; TV = FNMS(TT, TU, TR); T2a = FMA(TP, TU, T29); } } } } { E T36, Ty, T3B, T3G, T3b, T3g, T3e, T3r, T2d, T28, T3D, T1T, T3v, T39, T3F; E T13, T3s, T3j, T2b, TY; T36 = Te - Tx; Ty = Te + Tx; T2b = TZ * TX; TY = TW * TX; T3B = T3w + T3A; T3G = T3A - T3w; { E T1t, T2c, T11, T1S, T38, T12; T3b = T1d - T1s; T1t = T1d + T1s; T2c = FMA(TW, T10, T2b); T11 = FNMS(TZ, T10, TY); T1S = T1G + T1R; T3g = T1G - T1R; T3e = T3c - T3d; T3r = T3c + T3d; T38 = T2a + T2c; T2d = T2a - T2c; T28 = TV - T11; T12 = TV + T11; T3D = T1S - T1t; T1T = T1t + T1S; T3v = T37 + T38; T39 = T37 - T38; T3F = T12 - TL; T13 = TL + T12; T3s = T3h + T3i; T3j = T3h - T3i; } { E T3m, T3a, T3J, T3H, T3E, T3C; T3E = T3B - T3v; T3C = T3v + T3B; { E T3q, T14, T3u, T3t; T3q = Ty - T13; T14 = Ty + T13; T3u = T3r + T3s; T3t = T3r - T3s; ii[WS(ios, 4)] = T3D + T3E; ii[WS(ios, 12)] = T3E - T3D; ri[0] = T14 + T1T; ri[WS(ios, 8)] = T14 - T1T; ii[0] = T3u + T3C; ii[WS(ios, 8)] = T3C - T3u; ri[WS(ios, 4)] = T3q + T3t; ri[WS(ios, 12)] = T3q - T3t; } T3m = T36 - T39; T3a = T36 + T39; T3J = T3G - T3F; T3H = T3F + T3G; { E T2Q, T20, T3N, T3T, T2J, T2C, T3O, T2f, T34, T30, T2W, T2V, T3U, T2T, T2N; E T2v; { E T2R, T27, T2e, T2S; { E T3n, T3f, T3o, T3k; T2Q = T1U + T1Z; T20 = T1U - T1Z; T3n = T3e - T3b; T3f = T3b + T3e; T3o = T3g + T3j; T3k = T3g - T3j; T3N = T3L - T3M; T3T = T3M + T3L; { E T3p, T3I, T3K, T3l; T3p = T3n - T3o; T3I = T3n + T3o; T3K = T3k - T3f; T3l = T3f + T3k; ri[WS(ios, 6)] = FMA(KP707106781, T3p, T3m); ri[WS(ios, 14)] = FNMS(KP707106781, T3p, T3m); ii[WS(ios, 10)] = FNMS(KP707106781, T3I, T3H); ii[WS(ios, 2)] = FMA(KP707106781, T3I, T3H); ii[WS(ios, 14)] = FNMS(KP707106781, T3K, T3J); ii[WS(ios, 6)] = FMA(KP707106781, T3K, T3J); ri[WS(ios, 2)] = FMA(KP707106781, T3l, T3a); ri[WS(ios, 10)] = FNMS(KP707106781, T3l, T3a); T2R = T26 + T25; T27 = T25 - T26; T2e = T28 + T2d; T2S = T28 - T2d; } } { E T2Y, T2Z, T2n, T2u; T2J = T2D - T2I; T2Y = T2D + T2I; T2Z = T2A - T2B; T2C = T2A + T2B; T3O = T27 + T2e; T2f = T27 - T2e; T34 = FMA(KP414213562, T2Y, T2Z); T30 = FNMS(KP414213562, T2Z, T2Y); T2W = T2l - T2m; T2n = T2l + T2m; T2u = T2o - T2t; T2V = T2o + T2t; T3U = T2S - T2R; T2T = T2R + T2S; T2N = FNMS(KP414213562, T2n, T2u); T2v = FMA(KP414213562, T2u, T2n); } } { E T33, T2X, T3X, T3Y; { E T2M, T2g, T2O, T2K, T3V, T3W, T2P, T2L; T2M = FNMS(KP707106781, T2f, T20); T2g = FMA(KP707106781, T2f, T20); T33 = FNMS(KP414213562, T2V, T2W); T2X = FMA(KP414213562, T2W, T2V); T2O = FMA(KP414213562, T2C, T2J); T2K = FNMS(KP414213562, T2J, T2C); T3V = FMA(KP707106781, T3U, T3T); T3X = FNMS(KP707106781, T3U, T3T); T3W = T2O - T2N; T2P = T2N + T2O; T3Y = T2v + T2K; T2L = T2v - T2K; ii[WS(ios, 11)] = FNMS(KP923879532, T3W, T3V); ii[WS(ios, 3)] = FMA(KP923879532, T3W, T3V); ri[WS(ios, 3)] = FMA(KP923879532, T2L, T2g); ri[WS(ios, 11)] = FNMS(KP923879532, T2L, T2g); ri[WS(ios, 15)] = FMA(KP923879532, T2P, T2M); ri[WS(ios, 7)] = FNMS(KP923879532, T2P, T2M); } { E T32, T3P, T3Q, T35, T2U, T31; T32 = FNMS(KP707106781, T2T, T2Q); T2U = FMA(KP707106781, T2T, T2Q); T31 = T2X + T30; T3S = T30 - T2X; T3R = FNMS(KP707106781, T3O, T3N); T3P = FMA(KP707106781, T3O, T3N); ii[WS(ios, 15)] = FMA(KP923879532, T3Y, T3X); ii[WS(ios, 7)] = FNMS(KP923879532, T3Y, T3X); ri[WS(ios, 1)] = FMA(KP923879532, T31, T2U); ri[WS(ios, 9)] = FNMS(KP923879532, T31, T2U); T3Q = T33 + T34; T35 = T33 - T34; ii[WS(ios, 9)] = FNMS(KP923879532, T3Q, T3P); ii[WS(ios, 1)] = FMA(KP923879532, T3Q, T3P); ri[WS(ios, 5)] = FMA(KP923879532, T35, T32); ri[WS(ios, 13)] = FNMS(KP923879532, T35, T32); } } } }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -