⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 t2bv_16.c

📁 最新的FFT程序
💻 C
字号:
/* * Copyright (c) 2003, 2006 Matteo Frigo * Copyright (c) 2003, 2006 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Fri Jan 27 20:04:17 EST 2006 */#include "codelet-dft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_twiddle_c -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name t2bv_16 -include t2b.h -sign 1 *//* * This function contains 87 FP additions, 64 FP multiplications, * (or, 53 additions, 30 multiplications, 34 fused multiply/add), * 61 stack variables, and 32 memory accesses *//* * Generator Id's :  * $Id: algsimp.ml,v 1.8 2006-01-05 03:04:27 stevenj Exp $ * $Id: fft.ml,v 1.4 2006-01-05 03:04:27 stevenj Exp $ * $Id: gen_twiddle_c.ml,v 1.13 2006-01-05 03:04:27 stevenj Exp $ */#include "t2b.h"static const R *t2bv_16(R *ri, R *ii, const R *W, stride ios, INT m, INT dist){     DVK(KP923879532, +0.923879532511286756128183189396788286822416626);     DVK(KP414213562, +0.414213562373095048801688724209698078569671875);     DVK(KP707106781, +0.707106781186547524400844362104849039284835938);     INT i;     R *x;     x = ii;     for (i = m; i > 0; i = i - VL, x = x + (VL * dist), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(ios)) {	  V TO, Ta, TJ, TP, T14, Tq, T1i, T10, T1b, T1l, T13, T1c, TR, Tl, T15;	  V Tv;	  {	       V Tc, TW, T4, T19, T9, TD, TI, Tj, TZ, T1a, Te, Th, Tn, Tr, Tu;	       V Tp;	       {		    V T1, T2, T5, T7;		    T1 = LD(&(x[0]), dist, &(x[0]));		    T2 = LD(&(x[WS(ios, 8)]), dist, &(x[0]));		    T5 = LD(&(x[WS(ios, 4)]), dist, &(x[0]));		    T7 = LD(&(x[WS(ios, 12)]), dist, &(x[0]));		    {			 V Tz, TG, TB, TE;			 Tz = LD(&(x[WS(ios, 2)]), dist, &(x[0]));			 TG = LD(&(x[WS(ios, 6)]), dist, &(x[0]));			 TB = LD(&(x[WS(ios, 10)]), dist, &(x[0]));			 TE = LD(&(x[WS(ios, 14)]), dist, &(x[0]));			 {			      V Ti, TX, TY, Td, Tg, Tm, Tt, To;			      {				   V T3, T6, T8, TA, TH, TC, TF, Tb;				   Tb = LD(&(x[WS(ios, 1)]), dist, &(x[WS(ios, 1)]));				   T3 = BYTW(&(W[TWVL * 14]), T2);				   T6 = BYTW(&(W[TWVL * 6]), T5);				   T8 = BYTW(&(W[TWVL * 22]), T7);				   TA = BYTW(&(W[TWVL * 2]), Tz);				   TH = BYTW(&(W[TWVL * 10]), TG);				   TC = BYTW(&(W[TWVL * 18]), TB);				   TF = BYTW(&(W[TWVL * 26]), TE);				   Tc = BYTW(&(W[0]), Tb);				   TW = VSUB(T1, T3);				   T4 = VADD(T1, T3);				   T19 = VSUB(T6, T8);				   T9 = VADD(T6, T8);				   Ti = LD(&(x[WS(ios, 13)]), dist, &(x[WS(ios, 1)]));				   TD = VADD(TA, TC);				   TX = VSUB(TA, TC);				   TI = VADD(TF, TH);				   TY = VSUB(TF, TH);			      }			      Td = LD(&(x[WS(ios, 9)]), dist, &(x[WS(ios, 1)]));			      Tg = LD(&(x[WS(ios, 5)]), dist, &(x[WS(ios, 1)]));			      Tm = LD(&(x[WS(ios, 15)]), dist, &(x[WS(ios, 1)]));			      Tj = BYTW(&(W[TWVL * 24]), Ti);			      Tt = LD(&(x[WS(ios, 11)]), dist, &(x[WS(ios, 1)]));			      To = LD(&(x[WS(ios, 7)]), dist, &(x[WS(ios, 1)]));			      TZ = VADD(TX, TY);			      T1a = VSUB(TX, TY);			      Te = BYTW(&(W[TWVL * 16]), Td);			      Th = BYTW(&(W[TWVL * 8]), Tg);			      Tn = BYTW(&(W[TWVL * 28]), Tm);			      Tr = LD(&(x[WS(ios, 3)]), dist, &(x[WS(ios, 1)]));			      Tu = BYTW(&(W[TWVL * 20]), Tt);			      Tp = BYTW(&(W[TWVL * 12]), To);			 }		    }	       }	       {		    V Tf, T11, Tk, T12, Ts;		    TO = VADD(T4, T9);		    Ta = VSUB(T4, T9);		    TJ = VSUB(TD, TI);		    TP = VADD(TD, TI);		    Tf = VADD(Tc, Te);		    T11 = VSUB(Tc, Te);		    Tk = VADD(Th, Tj);		    T12 = VSUB(Th, Tj);		    Ts = BYTW(&(W[TWVL * 4]), Tr);		    T14 = VSUB(Tn, Tp);		    Tq = VADD(Tn, Tp);		    T1i = VFNMS(LDK(KP707106781), TZ, TW);		    T10 = VFMA(LDK(KP707106781), TZ, TW);		    T1b = VFMA(LDK(KP707106781), T1a, T19);		    T1l = VFNMS(LDK(KP707106781), T1a, T19);		    T13 = VFNMS(LDK(KP414213562), T12, T11);		    T1c = VFMA(LDK(KP414213562), T11, T12);		    TR = VADD(Tf, Tk);		    Tl = VSUB(Tf, Tk);		    T15 = VSUB(Tu, Ts);		    Tv = VADD(Ts, Tu);	       }	  }	  {	       V T1d, T16, TS, Tw, TU, TQ;	       T1d = VFMA(LDK(KP414213562), T14, T15);	       T16 = VFNMS(LDK(KP414213562), T15, T14);	       TS = VADD(Tq, Tv);	       Tw = VSUB(Tq, Tv);	       TU = VADD(TO, TP);	       TQ = VSUB(TO, TP);	       {		    V T1e, T1j, T17, T1m;		    T1e = VSUB(T1c, T1d);		    T1j = VADD(T1c, T1d);		    T17 = VADD(T13, T16);		    T1m = VSUB(T13, T16);		    {			 V TV, TT, TK, Tx;			 TV = VADD(TR, TS);			 TT = VSUB(TR, TS);			 TK = VSUB(Tl, Tw);			 Tx = VADD(Tl, Tw);			 {			      V T1h, T1f, T1o, T1k;			      T1h = VFMA(LDK(KP923879532), T1e, T1b);			      T1f = VFNMS(LDK(KP923879532), T1e, T1b);			      T1o = VFMA(LDK(KP923879532), T1j, T1i);			      T1k = VFNMS(LDK(KP923879532), T1j, T1i);			      {				   V T1g, T18, T1p, T1n;				   T1g = VFMA(LDK(KP923879532), T17, T10);				   T18 = VFNMS(LDK(KP923879532), T17, T10);				   T1p = VFNMS(LDK(KP923879532), T1m, T1l);				   T1n = VFMA(LDK(KP923879532), T1m, T1l);				   ST(&(x[WS(ios, 8)]), VSUB(TU, TV), dist, &(x[0]));				   ST(&(x[0]), VADD(TU, TV), dist, &(x[0]));				   ST(&(x[WS(ios, 4)]), VFMAI(TT, TQ), dist, &(x[0]));				   ST(&(x[WS(ios, 12)]), VFNMSI(TT, TQ), dist, &(x[0]));				   {					V TN, TL, TM, Ty;					TN = VFMA(LDK(KP707106781), TK, TJ);					TL = VFNMS(LDK(KP707106781), TK, TJ);					TM = VFMA(LDK(KP707106781), Tx, Ta);					Ty = VFNMS(LDK(KP707106781), Tx, Ta);					ST(&(x[WS(ios, 15)]), VFNMSI(T1h, T1g), dist, &(x[WS(ios, 1)]));					ST(&(x[WS(ios, 1)]), VFMAI(T1h, T1g), dist, &(x[WS(ios, 1)]));					ST(&(x[WS(ios, 9)]), VFMAI(T1f, T18), dist, &(x[WS(ios, 1)]));					ST(&(x[WS(ios, 7)]), VFNMSI(T1f, T18), dist, &(x[WS(ios, 1)]));					ST(&(x[WS(ios, 3)]), VFNMSI(T1p, T1o), dist, &(x[WS(ios, 1)]));					ST(&(x[WS(ios, 13)]), VFMAI(T1p, T1o), dist, &(x[WS(ios, 1)]));					ST(&(x[WS(ios, 11)]), VFNMSI(T1n, T1k), dist, &(x[WS(ios, 1)]));					ST(&(x[WS(ios, 5)]), VFMAI(T1n, T1k), dist, &(x[WS(ios, 1)]));					ST(&(x[WS(ios, 2)]), VFMAI(TN, TM), dist, &(x[0]));					ST(&(x[WS(ios, 14)]), VFNMSI(TN, TM), dist, &(x[0]));					ST(&(x[WS(ios, 10)]), VFMAI(TL, Ty), dist, &(x[0]));					ST(&(x[WS(ios, 6)]), VFNMSI(TL, Ty), dist, &(x[0]));				   }			      }			 }		    }	       }	  }     }     return W;}static const tw_instr twinstr[] = {     VTW(1),     VTW(2),     VTW(3),     VTW(4),     VTW(5),     VTW(6),     VTW(7),     VTW(8),     VTW(9),     VTW(10),     VTW(11),     VTW(12),     VTW(13),     VTW(14),     VTW(15),     {TW_NEXT, VL, 0}};static const ct_desc desc = { 16, "t2bv_16", twinstr, &GENUS, {53, 30, 34, 0}, 0, 0, 0 };void X(codelet_t2bv_16) (planner *p) {     X(kdft_dit_register) (p, t2bv_16, &desc);}#else				/* HAVE_FMA *//* Generated by: ../../../genfft/gen_twiddle_c -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name t2bv_16 -include t2b.h -sign 1 *//* * This function contains 87 FP additions, 42 FP multiplications, * (or, 83 additions, 38 multiplications, 4 fused multiply/add), * 36 stack variables, and 32 memory accesses *//* * Generator Id's :  * $Id: algsimp.ml,v 1.8 2006-01-05 03:04:27 stevenj Exp $ * $Id: fft.ml,v 1.4 2006-01-05 03:04:27 stevenj Exp $ * $Id: gen_twiddle_c.ml,v 1.13 2006-01-05 03:04:27 stevenj Exp $ */#include "t2b.h"static const R *t2bv_16(R *ri, R *ii, const R *W, stride ios, INT m, INT dist){     DVK(KP382683432, +0.382683432365089771728459984030398866761344562);     DVK(KP923879532, +0.923879532511286756128183189396788286822416626);     DVK(KP707106781, +0.707106781186547524400844362104849039284835938);     INT i;     R *x;     x = ii;     for (i = m; i > 0; i = i - VL, x = x + (VL * dist), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(ios)) {	  V TJ, T1b, TD, T1c, T17, T18, Ty, TK, T10, T11, T12, Tb, TM, T13, T14;	  V T15, Tm, TN, TG, TI, TH;	  TG = LD(&(x[0]), dist, &(x[0]));	  TH = LD(&(x[WS(ios, 8)]), dist, &(x[0]));	  TI = BYTW(&(W[TWVL * 14]), TH);	  TJ = VSUB(TG, TI);	  T1b = VADD(TG, TI);	  {	       V TA, TC, Tz, TB;	       Tz = LD(&(x[WS(ios, 4)]), dist, &(x[0]));	       TA = BYTW(&(W[TWVL * 6]), Tz);	       TB = LD(&(x[WS(ios, 12)]), dist, &(x[0]));	       TC = BYTW(&(W[TWVL * 22]), TB);	       TD = VSUB(TA, TC);	       T1c = VADD(TA, TC);	  }	  {	       V Tp, Tw, Tr, Tu, Ts, Tx;	       {		    V To, Tv, Tq, Tt;		    To = LD(&(x[WS(ios, 2)]), dist, &(x[0]));		    Tp = BYTW(&(W[TWVL * 2]), To);		    Tv = LD(&(x[WS(ios, 6)]), dist, &(x[0]));		    Tw = BYTW(&(W[TWVL * 10]), Tv);		    Tq = LD(&(x[WS(ios, 10)]), dist, &(x[0]));		    Tr = BYTW(&(W[TWVL * 18]), Tq);		    Tt = LD(&(x[WS(ios, 14)]), dist, &(x[0]));		    Tu = BYTW(&(W[TWVL * 26]), Tt);	       }	       T17 = VADD(Tp, Tr);	       T18 = VADD(Tu, Tw);	       Ts = VSUB(Tp, Tr);	       Tx = VSUB(Tu, Tw);	       Ty = VMUL(LDK(KP707106781), VSUB(Ts, Tx));	       TK = VMUL(LDK(KP707106781), VADD(Ts, Tx));	  }	  {	       V T2, T9, T4, T7, T5, Ta;	       {		    V T1, T8, T3, T6;		    T1 = LD(&(x[WS(ios, 1)]), dist, &(x[WS(ios, 1)]));		    T2 = BYTW(&(W[0]), T1);		    T8 = LD(&(x[WS(ios, 13)]), dist, &(x[WS(ios, 1)]));		    T9 = BYTW(&(W[TWVL * 24]), T8);		    T3 = LD(&(x[WS(ios, 9)]), dist, &(x[WS(ios, 1)]));		    T4 = BYTW(&(W[TWVL * 16]), T3);		    T6 = LD(&(x[WS(ios, 5)]), dist, &(x[WS(ios, 1)]));		    T7 = BYTW(&(W[TWVL * 8]), T6);	       }	       T10 = VADD(T2, T4);	       T11 = VADD(T7, T9);	       T12 = VSUB(T10, T11);	       T5 = VSUB(T2, T4);	       Ta = VSUB(T7, T9);	       Tb = VFNMS(LDK(KP382683432), Ta, VMUL(LDK(KP923879532), T5));	       TM = VFMA(LDK(KP382683432), T5, VMUL(LDK(KP923879532), Ta));	  }	  {	       V Td, Tk, Tf, Ti, Tg, Tl;	       {		    V Tc, Tj, Te, Th;		    Tc = LD(&(x[WS(ios, 15)]), dist, &(x[WS(ios, 1)]));		    Td = BYTW(&(W[TWVL * 28]), Tc);		    Tj = LD(&(x[WS(ios, 11)]), dist, &(x[WS(ios, 1)]));		    Tk = BYTW(&(W[TWVL * 20]), Tj);		    Te = LD(&(x[WS(ios, 7)]), dist, &(x[WS(ios, 1)]));		    Tf = BYTW(&(W[TWVL * 12]), Te);		    Th = LD(&(x[WS(ios, 3)]), dist, &(x[WS(ios, 1)]));		    Ti = BYTW(&(W[TWVL * 4]), Th);	       }	       T13 = VADD(Td, Tf);	       T14 = VADD(Ti, Tk);	       T15 = VSUB(T13, T14);	       Tg = VSUB(Td, Tf);	       Tl = VSUB(Ti, Tk);	       Tm = VFMA(LDK(KP923879532), Tg, VMUL(LDK(KP382683432), Tl));	       TN = VFNMS(LDK(KP382683432), Tg, VMUL(LDK(KP923879532), Tl));	  }	  {	       V T1a, T1g, T1f, T1h;	       {		    V T16, T19, T1d, T1e;		    T16 = VMUL(LDK(KP707106781), VSUB(T12, T15));		    T19 = VSUB(T17, T18);		    T1a = VBYI(VSUB(T16, T19));		    T1g = VBYI(VADD(T19, T16));		    T1d = VSUB(T1b, T1c);		    T1e = VMUL(LDK(KP707106781), VADD(T12, T15));		    T1f = VSUB(T1d, T1e);		    T1h = VADD(T1d, T1e);	       }	       ST(&(x[WS(ios, 6)]), VADD(T1a, T1f), dist, &(x[0]));	       ST(&(x[WS(ios, 14)]), VSUB(T1h, T1g), dist, &(x[0]));	       ST(&(x[WS(ios, 10)]), VSUB(T1f, T1a), dist, &(x[0]));	       ST(&(x[WS(ios, 2)]), VADD(T1g, T1h), dist, &(x[0]));	  }	  {	       V T1k, T1o, T1n, T1p;	       {		    V T1i, T1j, T1l, T1m;		    T1i = VADD(T1b, T1c);		    T1j = VADD(T17, T18);		    T1k = VSUB(T1i, T1j);		    T1o = VADD(T1i, T1j);		    T1l = VADD(T10, T11);		    T1m = VADD(T13, T14);		    T1n = VBYI(VSUB(T1l, T1m));		    T1p = VADD(T1l, T1m);	       }	       ST(&(x[WS(ios, 12)]), VSUB(T1k, T1n), dist, &(x[0]));	       ST(&(x[0]), VADD(T1o, T1p), dist, &(x[0]));	       ST(&(x[WS(ios, 4)]), VADD(T1k, T1n), dist, &(x[0]));	       ST(&(x[WS(ios, 8)]), VSUB(T1o, T1p), dist, &(x[0]));	  }	  {	       V TF, TQ, TP, TR;	       {		    V Tn, TE, TL, TO;		    Tn = VSUB(Tb, Tm);		    TE = VSUB(Ty, TD);		    TF = VBYI(VSUB(Tn, TE));		    TQ = VBYI(VADD(TE, Tn));		    TL = VSUB(TJ, TK);		    TO = VSUB(TM, TN);		    TP = VSUB(TL, TO);		    TR = VADD(TL, TO);	       }	       ST(&(x[WS(ios, 5)]), VADD(TF, TP), dist, &(x[WS(ios, 1)]));	       ST(&(x[WS(ios, 13)]), VSUB(TR, TQ), dist, &(x[WS(ios, 1)]));	       ST(&(x[WS(ios, 11)]), VSUB(TP, TF), dist, &(x[WS(ios, 1)]));	       ST(&(x[WS(ios, 3)]), VADD(TQ, TR), dist, &(x[WS(ios, 1)]));	  }	  {	       V TU, TY, TX, TZ;	       {		    V TS, TT, TV, TW;		    TS = VADD(TJ, TK);		    TT = VADD(Tb, Tm);		    TU = VADD(TS, TT);		    TY = VSUB(TS, TT);		    TV = VADD(TD, Ty);		    TW = VADD(TM, TN);		    TX = VBYI(VADD(TV, TW));		    TZ = VBYI(VSUB(TW, TV));	       }	       ST(&(x[WS(ios, 15)]), VSUB(TU, TX), dist, &(x[WS(ios, 1)]));	       ST(&(x[WS(ios, 7)]), VADD(TY, TZ), dist, &(x[WS(ios, 1)]));	       ST(&(x[WS(ios, 1)]), VADD(TU, TX), dist, &(x[WS(ios, 1)]));	       ST(&(x[WS(ios, 9)]), VSUB(TY, TZ), dist, &(x[WS(ios, 1)]));	  }     }     return W;}static const tw_instr twinstr[] = {     VTW(1),     VTW(2),     VTW(3),     VTW(4),     VTW(5),     VTW(6),     VTW(7),     VTW(8),     VTW(9),     VTW(10),     VTW(11),     VTW(12),     VTW(13),     VTW(14),     VTW(15),     {TW_NEXT, VL, 0}};static const ct_desc desc = { 16, "t2bv_16", twinstr, &GENUS, {83, 38, 4, 0}, 0, 0, 0 };void X(codelet_t2bv_16) (planner *p) {     X(kdft_dit_register) (p, t2bv_16, &desc);}#endif				/* HAVE_FMA */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -