📄 csfit.m
字号:
function S=csfit(X,Y,dx0,dxn)%Input - X is the 1xn abscissa vector% - Y is the 1xn ordinate vector% - dxo = S'(x0) first derivative boundary condition% - dxn = S'(xn) first derivative boundary condition%Output - S: rows of S are the coefficients for the cubic interpolants% NUMERICAL METHODS: MATLAB Programs%(c) 1999 by John H. Mathews and Kurtis D. Fink%To accompany the textbook:%NUMERICAL METHODS Using MATLAB,%by John H. Mathews and Kurtis D. Fink%ISBN 0-13-270042-5, (c) 1999%PRENTICE HALL, INC.%Upper Saddle River, NJ 07458N=length(X)-1;H=diff(X);D=diff(Y)./H;A=H(2:N-1);B=2*(H(1:N-1)+H(2:N));C=H(2:N);C=H(2:N);U=6*diff(D);%Clamped spline endpoint constraintsB(1)=B(1)-H(1)/2;U(1)=U(1)-3*(D(1)-dx0);B(N-1)=B(N-1)-H(N)/2;U(N-1)=U(N-1)-3*(dxn-D(N));for k=2:N-1 temp=A(k-1)/B(k-1); B(k)=B(k)-temp*C(k-1); U(k)=U(k)-temp*U(k-1);endM(N)=U(N-1)/B(N-1);for k=N-2:-1:1 M(k+1)=(U(k)-C(k)*M(k+2))/B(k);end%Clamped spline endpoint constraintsM(1)=3*(D(1)-dx0)/H(1)-M(2)/2;M(N+1)=3*(dxn-D(N))/H(N)-M(N)/2;for k=0:N-1 S(k+1,1)=(M(k+2)-M(k+1))/(6*H(k+1)); S(k+1,2)=M(k+1)/2; S(k+1,3)=D(k+1)-H(k+1)*(2*M(k+1)+M(k+2))/6; S(k+1,4)=Y(k+1);end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -