📄 imalgchar.m
字号:
function [M] = imalgchar(P,X,gen,n,pm,per);
%
% Ph.D. Thesis
% Leandro Nunes de Castro
% November, 1999.
% Immune Algorithm - New evolutionary strategy inspired in the Immune System
% Operations: Hypermutation, Editing, Selection
% Each clone has size proportional to its affinity
%
% function [M] = pattern(P,X,gen,n,pm,per);
% M -> memory matrix
% P -> population of size N x L% X -> patterns to be recognized np x L
% gen -> number of generations
% n -> number of clones
% pm -> hypermutation probability
% per -> percentile of the population to suffer random reshuffle
%
% T -> temporary population% M -> Memory matrix (functionally disconnected)
% Tips: proportional clone sizes with very high sizes, e.g., fat = L%
if nargin == 2,
gen = 100; n = round(size(P,1)/2); pm = 0.05; per = 0.0; fat = 10;
% gen = 200; n = size(P,1); pm = 0.1; per = 0.0; fat = 35;
end;
while n <= 0,
n = input('n has to be at least one. Type a new value for n: ');
end;
[N,L] = size(P); it = 0;np = size(X,1); PRINT = 1;
% Hypermutation controlling parameters
pma = pm; itpm = 10; pmr = 0.8;
mfit = []; vpm = []; menor = 1;
M = cadeia(np,L+1);
disp(sprintf('Population size: %d',N));disp(sprintf('Memory matrix size: [%d,%d]',np,L));
disp(sprintf('Maximum number of generations: %d',gen));
imprime(PRINT,12,10,X,it,1,1); title('Pattern to be recognized');
imprime(PRINT,12,10,M(1,2:end),it,1,2); title('Initial memory matrix');
disp('Press any key to continue...'); pause;
M = hardlim(M); M(1,1) = L; % Transform into a binary matrix
% Generations
while it < gen & menor > 0, T = []; k = 0; vet = randperm(np); vfit = []; vind = []; % Assincronous
while k < np, k = k+1; fit = []; % i = vet(k);
[fit,mXOR] = match(P,X(k,:),0); [v(k,:),ind(k,:)] = sort(fit); % Reproduction [T,pcs] = reprod(n,fat,N,ind(k,:),P,T); % Hypermutation Ta = rand(size(T,1),L) <= pm; T = T - 2 .* (T.*Ta) + Ta; % 0,1 mutation T(pcs,:) = P(ind(k,1:n),:); % keep the previous best individuals
% Re-selection [fit,mXOR] = match(T,X(k,:),0); pcs = [0 pcs]; for i=1:n, [out(i),bcs(i)] = min(fit(pcs(i)+1:pcs(i+1))); % Minimization problem bcs(i) = bcs(i) + pcs(i); end; P(ind(k,1:n),:) = T(bcs,:); % Memory Assignment & Evaluation [b,indb] = min(fit); if b < M(k,1), M(k,1) = b; M(k,2:end) = T(indb,:); menor(k) = b; else, menor(k) = M(k,1); end; % Editing (Repertoire shift) nedit = round(per*N); if nedit > 0, P(ind(k,N-nedit-np+1:N-np),:) = cadeia(nedit,L,0,0,0); end; end; P(ind(:,1),:) = M(:,2:end); % Hypermutation control [pm] = pmcont(pm,pma,pmr,it,itpm); menor = sum(menor); vfit = [vfit,menor]; it = it + 1;
disp(sprintf('It.: %d pm: %.3f F: %2.4f',it,pm,menor)); Mem = hardlims(M - 0.1);
imprime(PRINT,12,10,Mem(:,2:end),it,5,2);
end; % end whileimprime(PRINT,12,10,M(:,2:end),it,1,2);% --------------------- %
% INTERNAL SUBFUNCTIONS% --------------------- %
% Function plot picturesfunction [] = imprime(PRINT,res_lin,res_col,P,it,mit,fn);if PRINT == 1, if rem(it,mit) == 0, fig(res_lin,res_col,0,fn,P); end;end;
function [mat] = fig(L,C,div,fn,X)
figure(fn); clf; hold on;
for i = 1:size(X,1),
mat = reshape(X(i,:),C,L)';
if (div == 1),
subplot(2,4,i);
end;
image(mat*15);axis('square');axis('off');
end;
drawnow; hold off;
% Function match bipolar stringsfunction [ms,mXOR] = match(ab,ag,comp)
if nargin == 2,
comp = 0; % Hamming distance
end;
msc = []; % ms complementif min(min(ag)) == -1, ag = hardlim(ag);end;% Using the XOR operator for calculating the match score
[n1,s1] = size(ab);
ag = ones(n1,1) * ag; % Multiply the AntigenmXOR = xor(ab,ag);ms = sum(mXOR');msc = 1 - ms;if comp == 1,
ms = msc;
end;
% Reproductionfunction [T,pcs] = reprod(n,fat,N,ind,P,T);% n -> number of clones% fat -> multiplying factor% ind -> best individuals% T -> temporary population% pcs -> final position of each cloneif n == 1, pcs = N; T = ones(N,1) * P(ind(1),:);else, for i=1:n, cs(i) = round(fat*N/i); % cs(i) = round(fat*N); pcs(i) = sum(cs); T = [T; ones(cs(i),1) * P(ind(i),:)]; end;end;
% Control of pmfunction [pm] = pmcont(pm,pma,pmr,it,itpm);% pma -> initial value% pmr -> control rate% itpm -> iterations for restoringif rem(it,itpm) == 0, pm = pm * pmr; if rem(it,10*itpm) == 0, pm = pma; end;end;
function [ab,ag] = cadeia(n1,s1,n2,s2,bip)
if nargin == 2,
n2 = n1; s2 = s1; bip = 1;
elseif nargin == 4,
bip = 1;
end;
% Antibody (Ab) chains
ab = 2 .* rand(n1,s1) - 1;
if bip == 1,
ab = hardlims(ab);
else,
ab = hardlim(ab);
end;
% Antigen (Ag) chains
ag = 2 .* rand(n2,s2) - 1;
if bip == 1,
ag = hardlims(ag);
else,
ag = hardlim(ag);
end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -