⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pmsm3_1.c

📁 TI公司28XDSP控制永磁同步电机(PMSM)
💻 C
📖 第 1 页 / 共 3 页
字号:
       park1.Angle = 0;
       park1.calc(&park1);

// ------------------------------------------------------------------------------
//    Connect inputs of the PID_REG3 module and call the PID IQ controller
//    calculation function.
// ------------------------------------------------------------------------------  
       pid1_iq.Ref = _IQ(IqRef);
	   pid1_iq.Fdb = park1.Qs;
	   pid1_iq.calc(&pid1_iq);

// ------------------------------------------------------------------------------
//    Connect inputs of the PID_REG3 module and call the PID ID controller
//    calculation function.
// ------------------------------------------------------------------------------  
       pid1_id.Ref = _IQ(IdRef);
	   pid1_id.Fdb = park1.Ds;
	   pid1_id.calc(&pid1_id);

// ------------------------------------------------------------------------------
//    Connect inputs of the INV_PARK module and call the inverse park transformation
//    calculation function.
// ------------------------------------------------------------------------------
       ipark1.Ds = pid1_id.Out;
       ipark1.Qs = pid1_iq.Out;	
       ipark1.Angle = 0;
       ipark1.calc(&ipark1);

	}   // End: LockRotorFlag==TRUE
    
    else if(LockRotorFlag==FALSE)
    {   // spinning mode if LockRotorFlag = 0

// ------------------------------------------------------------------------------
//    Connect inputs of the PARK module and call the park transformation
//    calculation function.
// ------------------------------------------------------------------------------
       park1.Alpha = clarke1.Alpha;
       park1.Beta = clarke1.Beta;
       park1.Angle = rg1.Out;
       park1.calc(&park1);

// ------------------------------------------------------------------------------
//    Connect inputs of the PID_REG3 module and call the PID IQ controller
//    calculation function.
// ------------------------------------------------------------------------------  
       pid1_iq.Ref = _IQ(IqRef);
	   pid1_iq.Fdb = park1.Qs;
	   pid1_iq.calc(&pid1_iq);

// ------------------------------------------------------------------------------
//    Connect inputs of the PID_REG3 module and call the PID ID controller
//    calculation function.
// ------------------------------------------------------------------------------  
       pid1_id.Ref = _IQ(IdRef);
	   pid1_id.Fdb = park1.Ds;
	   pid1_id.calc(&pid1_id);

// ------------------------------------------------------------------------------
//    Connect inputs of the INV_PARK module and call the inverse park transformation
//    calculation function.
// ------------------------------------------------------------------------------
       ipark1.Ds = pid1_id.Out;
       ipark1.Qs = pid1_iq.Out;	
       ipark1.Angle = rg1.Out;
       ipark1.calc(&ipark1);

    }   // End: LockRotorFlag==FALSE

// ------------------------------------------------------------------------------
//    Connect inputs of the SVGEN_DQ module and call the space-vector gen.
//    calculation function.
// ------------------------------------------------------------------------------
    svgen_dq1.Ualpha = ipark1.Alpha;
 	svgen_dq1.Ubeta = ipark1.Beta;
  	svgen_dq1.calc(&svgen_dq1);	

// ------------------------------------------------------------------------------
//    Connect inputs of the PWM_DRV module and call the PWM signal generation 
//    update function.
// ------------------------------------------------------------------------------
    pwm1.MfuncC1 = (int16)_IQtoIQ15(svgen_dq1.Ta); // MfuncC1 is in Q15
    pwm1.MfuncC2 = (int16)_IQtoIQ15(svgen_dq1.Tb); // MfuncC2 is in Q15  
    pwm1.MfuncC3 = (int16)_IQtoIQ15(svgen_dq1.Tc); // MfuncC3 is in Q15
    pwm1.update(&pwm1);

// ------------------------------------------------------------------------------
//    Call the QEP calculation function 
// ------------------------------------------------------------------------------
    qep1.calc(&qep1);

// ------------------------------------------------------------------------------
//    Connect inputs of the SPEED_FR module and call the speed calculation function 
// ------------------------------------------------------------------------------
    #if (DSP_TARGET==F2808)
       speed1.ElecTheta = _IQ24toIQ((int32)qep1.ElecTheta);
       speed1.DirectionQep = (int32)(qep1.DirectionQep);
       speed1.calc(&speed1);

       speed2.EventPeriod = qep1.QepPeriod;   // Read out new eQep time stamp difference
       speed2.calc(&speed2);                  // Call the speed calulator      
    #endif
    #if (DSP_TARGET==F2812)
       speed1.ElecTheta = _IQ15toIQ((int32)qep1.ElecTheta);
       speed1.DirectionQep = (int32)(qep1.DirectionQep);
       speed1.calc(&speed1);
    #endif

// ------------------------------------------------------------------------------
//    Connect inputs of the PWMDAC module 
// ------------------------------------------------------------------------------	
    PwmDacCh1 = (int16)_IQtoIQ15(svgen_dq1.Ta);
    PwmDacCh2 = (int16)_IQtoIQ15(rg1.Out);    
    PwmDacCh3 = (int16)_IQtoIQ15(speed1.ElecTheta);    

// ------------------------------------------------------------------------------
//    Connect inputs of the DATALOG module 
// ------------------------------------------------------------------------------
    DlogCh1 = (int16)_IQtoIQ15(svgen_dq1.Ta);
    DlogCh2 = (int16)_IQtoIQ15(clarke1.As);
    DlogCh3 = (int16)_IQtoIQ15(speed1.ElecTheta);
    DlogCh4 = (int16)_IQtoIQ15(rg1.Out);

// ------------------------------------------------------------------------------
//    Connect inputs of the EN_DRV module and call the enable/disable PWM signal
//    update function. (FOR DMC1500 ONLY)
// ------------------------------------------------------------------------------ 
    drv1.EnableFlag = EnableFlag;
    drv1.update(&drv1);

#endif // (BUILDLEVEL==LEVEL4)


// ***************** LEVEL5 *****************
#if (BUILDLEVEL==LEVEL5)

// ------------------------------------------------------------------------------
//    Call the ILEG2_VDC read function.
// ------------------------------------------------------------------------------
    ilg2_vdc1.read(&ilg2_vdc1);

// ------------------------------------------------------------------------------
//    Connect inputs of the CLARKE module and call the clarke transformation
//    calculation function.
// ------------------------------------------------------------------------------
 	clarke1.As = _IQ15toIQ((int32)ilg2_vdc1.ImeasA);
  	clarke1.Bs = _IQ15toIQ((int32)ilg2_vdc1.ImeasB);
	clarke1.calc(&clarke1);

// ------------------------------------------------------------------------------
//    Connect inputs of the PARK module and call the park transformation
//    calculation function.
// ------------------------------------------------------------------------------
    park1.Alpha = clarke1.Alpha;
    park1.Beta = clarke1.Beta;
    park1.Angle = speed1.ElecTheta;
    park1.calc(&park1);
 
// ------------------------------------------------------------------------------
//    Connect inputs of the PID_REG3 module and call the PID speed controller
//    calculation function.
// ------------------------------------------------------------------------------  
    if (SpeedLoopCount==SpeedLoopPrescaler)
     {
      pid1_spd.Ref = _IQ(SpeedRef);
      pid1_spd.Fdb = speed1.Speed;
	  pid1_spd.calc(&pid1_spd);
      SpeedLoopCount=1;
     }
    else SpeedLoopCount++; 

// ------------------------------------------------------------------------------
//    Connect inputs of the PID_REG3 module and call the PID IQ controller
//    calculation function.
// ------------------------------------------------------------------------------  
    pid1_iq.Ref = pid1_spd.Out;
	pid1_iq.Fdb = park1.Qs;
	pid1_iq.calc(&pid1_iq);

// ------------------------------------------------------------------------------
//    Connect inputs of the PID_REG3 module and call the PID ID controller
//    calculation function.
// ------------------------------------------------------------------------------  
    pid1_id.Ref = _IQ(IdRef);
	pid1_id.Fdb = park1.Ds;
	pid1_id.calc(&pid1_id);

// ------------------------------------------------------------------------------
//    Connect inputs of the INV_PARK module and call the inverse park transformation
//    calculation function.
// ------------------------------------------------------------------------------
    ipark1.Ds = pid1_id.Out;
    ipark1.Qs = pid1_iq.Out;	
    ipark1.Angle = speed1.ElecTheta;
    ipark1.calc(&ipark1);

// ------------------------------------------------------------------------------
//    Connect inputs of the SVGEN_DQ module and call the space-vector gen.
//    calculation function.
// ------------------------------------------------------------------------------
  	svgen_dq1.Ualpha = ipark1.Alpha;
 	svgen_dq1.Ubeta = ipark1.Beta;
  	svgen_dq1.calc(&svgen_dq1);	

// ------------------------------------------------------------------------------
//    Connect inputs of the PWM_DRV module and call the PWM signal generation 
//    update function.
// ------------------------------------------------------------------------------
    pwm1.MfuncC1 = (int16)_IQtoIQ15(svgen_dq1.Ta); // MfuncC1 is in Q15
    pwm1.MfuncC2 = (int16)_IQtoIQ15(svgen_dq1.Tb); // MfuncC2 is in Q15  
    pwm1.MfuncC3 = (int16)_IQtoIQ15(svgen_dq1.Tc); // MfuncC3 is in Q15
	pwm1.update(&pwm1);
	
// ------------------------------------------------------------------------------
//    Call the QEP calculation function 
// ------------------------------------------------------------------------------
    qep1.calc(&qep1);

// ------------------------------------------------------------------------------
//    Connect inputs of the SPEED_FR module and call the speed calculation function 
// ------------------------------------------------------------------------------
    #if (DSP_TARGET==F2808)
       speed1.ElecTheta = _IQ24toIQ((int32)qep1.ElecTheta);
       speed1.DirectionQep = (int32)(qep1.DirectionQep);
       speed1.calc(&speed1);

       speed2.EventPeriod = qep1.QepPeriod;   // Read out new eQep time stamp difference
       speed2.calc(&speed2);                  // Call the speed calulator      
    #endif
    #if (DSP_TARGET==F2812)
       speed1.ElecTheta = _IQ15toIQ((int32)qep1.ElecTheta);
       speed1.DirectionQep = (int32)(qep1.DirectionQep);
       speed1.calc(&speed1);
    #endif
    
// ------------------------------------------------------------------------------
//    Connect inputs of the PWMDAC module 
// ------------------------------------------------------------------------------	
    PwmDacCh1 = (int16)_IQtoIQ15(svgen_dq1.Ta);
    PwmDacCh2 = (int16)_IQtoIQ15(speed1.ElecTheta);    
    PwmDacCh3 = (int16)_IQtoIQ15(clarke1.As);    

// ------------------------------------------------------------------------------
//    Connect inputs of the DATALOG module 
// ------------------------------------------------------------------------------
    DlogCh1 = (int16)_IQtoIQ15(svgen_dq1.Ta);
    DlogCh2 = (int16)_IQtoIQ15(speed1.ElecTheta);
    DlogCh3 = (int16)_IQtoIQ15(pid1_spd.Ref);
    DlogCh4 = (int16)_IQtoIQ15(pid1_spd.Fdb);

// ------------------------------------------------------------------------------
//    Connect inputs of the EN_DRV module and call the enable/disable PWM signal
//    update function. (FOR DMC1500 ONLY)
// ------------------------------------------------------------------------------ 
    drv1.EnableFlag = EnableFlag;
    drv1.update(&drv1);

#endif // (BUILDLEVEL==LEVEL5) 

// ------------------------------------------------------------------------------
//    Call the PWMDAC update function.
// ------------------------------------------------------------------------------
	pwmdac1.update(&pwmdac1);  

// ------------------------------------------------------------------------------
//    Call the DATALOG update function.
// ------------------------------------------------------------------------------
    dlog.update(&dlog);


#if (DSP_TARGET==F2808)
// Enable more interrupts from this timer
	EPwm1Regs.ETCLR.bit.INT = 1;

// Acknowledge interrupt to recieve more interrupts from PIE group 3
	PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;
#endif


#if (DSP_TARGET==F2812)
// Enable more interrupts from this timer
	EvaRegs.EVAIMRA.bit.T1UFINT = 1;
	
// Note: To be safe, use a mask value to write to the entire
	// EVAIFRA register.  Writing to one bit will cause a read-modify-write
	// operation that may have the result of writing 1's to clear 
	// bits other then those intended. 
    EvaRegs.EVAIFRA.all = BIT9;
	
// Acknowledge interrupt to recieve more interrupts from PIE group 2
	PieCtrlRegs.PIEACK.all |= PIEACK_GROUP2;
#endif

}


#if (DSP_TARGET==F2812)
interrupt void QepISR(void)
{

// ------------------------------------------------------------------------------
//    Call the QEP_DRV isr function.
// ------------------------------------------------------------------------------
   qep1.isr(&qep1);

// Enable more interrupts from this timer
	EvaRegs.EVAIMRC.bit.CAP3INT = 1;
	
// Note: To be safe, use a mask value to write to the entire
	// EVAIFRC register.  Writing to one bit will cause a read-modify-write
	// operation that may have the result of writing 1's to clear 
	// bits other then those intended. 
    EvaRegs.EVAIFRC.all = BIT2;
	
// Acknowledge interrupt to recieve more interrupts from PIE group 3
	PieCtrlRegs.PIEACK.all |= PIEACK_GROUP3;
  
}
#endif

//===========================================================================
// No more.
//===========================================================================

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -