📄 iv.cpp
字号:
//// iv.cpp//// $Id: iv.cpp,v 1.2 2005/07/21 20:12:04 ediap Exp $//#include <cmath>#include <itpp/base/itassert.h>#include <itpp/base/scalfunc.h>#include <itpp/base/bessel/bessel_internal.h>using namespace itpp;// This is slightly modified routine from the Cephes library, see http://www.netlib.org/cephes/// // According to licence agreement this software can be used freely.///* * odified Bessel function of noninteger order * * double v, x, y, iv(); * * y = iv( v, x ); * * DESCRIPTION: * * Returns modified Bessel function of order v of the * argument. If x is negative, v must be integer valued. * * The function is defined as Iv(x) = Jv( ix ). It is * here computed in terms of the confluent hypergeometric * function, according to the formula * * v -x * Iv(x) = (x/2) e hyperg( v+0.5, 2v+1, 2x ) / gamma(v+1) * * If v is a negative integer, then v is replaced by -v. * * * ACCURACY: * * Tested at random points (v, x), with v between 0 and * 30, x between 0 and 28. * Relative error: * arithmetic domain # trials peak rms * IEEE 0,30 10000 1.7e-14 2.7e-15 * * Accuracy is diminished if v is near a negative integer. * * See also hyperg.c. *//* Modified Bessel function of noninteger order *//* If x < 0, then v must be an integer. *//*Cephes Math Library Release 2.8: June, 2000Copyright 1984, 1987, 1988, 2000 by Stephen L. Moshier*/#define MAXNUM 1.79769313486231570815E308 /* 2**1024*(1-MACHEP) */double iv(double v, double x){ int sign; double t, ax; /* If v is a negative integer, invoke symmetry */ t = floor(v); if( v < 0.0 ) { if( t == v ) { v = -v; /* symmetry */ t = -t; } } /* If x is negative, require v to be an integer */ sign = 1; if( x < 0.0 ) { if( t != v ) { it_warning("besseli:: argument domain error"); //mtherr( "iv", DOMAIN ); return( 0.0 ); } if( v != 2.0 * floor(v/2.0) ) sign = -1; } /* Avoid logarithm singularity */ if( x == 0.0 ) { if( v == 0.0 ) return( 1.0 ); if( v < 0.0 ) { it_warning("besseli:: overflow"); //mtherr( "iv", OVERFLOW ); return( MAXNUM ); } else return( 0.0 ); } ax = fabs(x); t = v * log( 0.5 * ax ) - x; t = sign * exp(t) / itpp::gamma( v + 1.0 ); ax = v + 0.5; return( t * hyperg( ax, 2.0 * ax, 2.0 * x ) );}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -