📄 operate.c
字号:
#include "operate.h"
#define saturate(x) \
((x) < MIN_WORD ? MIN_WORD : (x) > MAX_WORD ? MAX_WORD: (x))
/*table*/
/*量化LAR(i) Table 3.1*/
word gsm_A[8] = {20480, 20480, 20480, 20480, 13964, 15360, 8534, 9036};
word gsm_B[8] = { 0, 0, 2048, -2560, 94, -1792, -341, -1144};
word gsm_MIC[8] = { -32, -32, -16, -16, -8, -8, -4, -4 };
word gsm_MAC[8] = { 31, 31, 15, 15, 7, 7, 3, 3 };
/*gsm_A数组的倒数1/A*/
word gsm_INVA[8]={ 13107, 13107, 13107, 13107, 19223, 17476, 31454, 29708 };
/* Table 4.3a Decision level of the LTP gain quantizer */
/* bc 0 1 2 3 */
word gsm_DLB[4] = { 6554, 16384, 26214, 32767 };
/* Table 4.3b Quantization levels of the LTP gain quantizer*/
/* bc 0 1 2 3 */
word gsm_QLB[4] = { 3277, 11469, 21299, 32767 };
/* Table 4.4 Coefficients of the weighting filter*/
/* i 0 1 2 3 4 5 6 7 8 9 10 */
word gsm_H[11] = {-134, -374, 0, 2054, 5741, 8192, 5741, 2054, 0, -374, -134 };
/* Table 4.5 Normalized inverse mantissa used to compute xM/xmax */
/* i 0 1 2 3 4 5 6 7 */
word gsm_NRFAC[8] = { 29128, 26215, 23832, 21846, 20165, 18725, 17476, 16384 };
/* Table 4.6 Normalized direct mantissa used to compute xM/xmax*/
/* i 0 1 2 3 4 5 6 7 */
word gsm_FAC[8] = { 18431, 20479, 22527, 24575, 26623, 28671, 30719, 32767 };
word gsm_add (word a, word b)
{
longword sum = a + b;
return (word) saturate(sum);
}
word gsm_sub ( word a, word b)
{
longword diff = a - b;
return (word) saturate(diff);
}
word gsm_mult (word a, word b)
{
if (a == MIN_WORD && b == MIN_WORD)
return MAX_WORD;
else
return (word) SASR( (longword)a * (longword)b, 15 );
}
word gsm_mult_r (word a, word b)
{
if (b == MIN_WORD && a == MIN_WORD)
return MAX_WORD;
else
{
longword prod = (longword)a * (longword)b + 16384;
prod >>= 15;
return (word) (prod & 0xFFFF);
}
}
word gsm_abs (word a)
{
return a < 0 ? (a == MIN_WORD ? MAX_WORD : -a) : a;
}
longword gsm_L_mult (word a, word b)
{
assert( a != MIN_WORD || b != MIN_WORD );
return ((longword)a * (longword)b) << 1;
}
longword gsm_L_add (longword a, longword b)
{
if (a < 0)
{
if (b >= 0)
return a + b;
else
{
ulongword A = (ulongword)-(a + 1) + (ulongword)-(b + 1);
return A >= MAX_LONGWORD ? MIN_LONGWORD :-(longword)A-2;
}
}
else if (b <= 0)
return a + b;
else
{
ulongword A = (ulongword)a + (ulongword)b;
return A > MAX_LONGWORD ? MAX_LONGWORD : A;
}
}
longword gsm_L_sub (longword a, longword b)
{
if (a >= 0)
{
if (b >= 0)
return a - b;
else
{
/* a>=0, b<0 */
ulongword A = (ulongword)a + -(b + 1);
return A >= MAX_LONGWORD ? MAX_LONGWORD : (A + 1);
}
}
else if (b <= 0)
return a - b;
else
{
/* a<0, b>0 */
ulongword A = (ulongword)-(a + 1) + b;
return A >= MAX_LONGWORD ? MIN_LONGWORD : -((longword) A) - 1;
}
}
static unsigned char bitoff[ 256 ] = {
8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
word gsm_norm (longword a )
/*
* the number of left shifts needed to normalize the 32 bit
* variable L_var1 for positive values on the interval
*
* with minimum of
* minimum of 1073741824 (0100 0000 0000 0000 0000 0000 0000 0000) and
* maximum of 2147483647 (01111111111111111111111111111111)
*
*
* and for negative values on the interval with
* minimum of -2147483648 (-1000 0000 0000 0000 0000 0000 0000 0000) and
* maximum of -1073741824 ( -1000000000000000000000000000000).
*
* in order to normalize the result, the following
* operation must be done: L_norm_var1 = L_var1 << norm( L_var1 );
*
* (That's 'ffs', only from the left, not the right..)
*/
{
assert(a != 0);
if (a < 0)
{
if (a <= -1073741824) return 0;
a = ~a;
}
return a & 0xffff0000
? ( a & 0xff000000
? -1 + bitoff[ 0xFF & (a >> 24) ]
: 7 + bitoff[ 0xFF & (a >> 16) ] )
: ( a & 0xff00
? 15 + bitoff[ 0xFF & (a >> 8) ]
: 23 + bitoff[ 0xFF & a ] );
}
longword gsm_L_asr (longword a, int n)
{
if (n >= 32)
return -(a < 0);
if (n <= -32)
return 0;
if (n < 0)
return a << -n;
# ifdef SASR
return a >> n;
# else
if (a >= 0)
return a >> n;
else
return -(longword)( -(ulongword)a >> n );
# endif
}
word gsm_asr (word a, int n)
{
if (n >= 16)
return -(a < 0);
if (n <= -16)
return 0;
if (n < 0)
return a << -n;
# ifdef SASR
return a >> n;
# else
if (a >= 0)
return a >> n;
else
return -(word)( -(uword)a >> n );
# endif
}
longword gsm_L_asl (longword a, int n)
{
if (n >= 32)
return 0;
if (n <= -32)
return -(a < 0);
if (n < 0)
return gsm_asr((word) a, -n);
return a << n;
}
word gsm_asl (word a, int n)
{
if (n >= 16)
return 0;
if (n <= -16)
return -(a < 0);
if (n < 0)
return gsm_asr(a, -n);
return a << n;
}
/*
* (From p. 46, end of section 4.2.5)
*
* NOTE: The following lines gives [sic] one correct implementation
* of the div(num, denum) arithmetic operation. Compute div
* which is the integer division of num by denum: with denum
* >= num > 0
* 返回值为小数
*/
word gsm_div (word num, word denum)
{
longword L_num = num;
longword L_denum = denum;
word div = 0;
int k = 15;
/* The parameter num sometimes becomes zero.
* Although this is explicitly guarded against in 4.2.5,
* we assume that the result should then be zero as well.
*/
/* assert(num != 0); */
assert(num >= 0 && denum >= num);
if (num == 0)
return 0;
while (k--)
{
div <<= 1;
L_num <<= 1;
if (L_num >= L_denum) {
L_num -= L_denum;
div++;
}
}
return div;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -