⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 overview and examples.htm

📁 模式识别的主要工具集合
💻 HTM
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- saved from url=(0043)http://www.ncrg.aston.ac.uk/netlab/over.php -->
<HTML><HEAD><TITLE>Overview and Examples</TITLE><LINK 
href="Overview and Examples.files/astonuni.css" type=text/css 
rel=stylesheet><LINK href="Overview and Examples.files/netlab_style.css" 
type=text/css rel=stylesheet><INSERT nocache file="netlab_tags.txt">
<META http-equiv=Content-Type content="text/html;&#10;charset=iso-8859-1">
<META content="MSHTML 6.00.2900.2668" name=GENERATOR></HEAD>
<BODY>
<P></P><IMG height=50 alt="Netlab logo" 
src="Overview and Examples.files/netlogo.gif" align=top>
<P></P>
<HR>

<P></P><BR>
<TABLE width="100%">
  <TBODY>
  <TR vAlign=top>
    <TD align=middle rowSpan=2>
      <HR>
      <A class=link_style 
      href="http://www.ncrg.aston.ac.uk/netlab/index.php">Welcome</A>
      <HR>
      <A class=link_style 
      href="http://www.ncrg.aston.ac.uk/netlab/news.php">News</A>
      <HR>
      <A class=link_style 
      href="http://www.ncrg.aston.ac.uk/netlab/down.php">Downloads</A>
      <HR>
      <A class=link_style 
      href="http://www.ncrg.aston.ac.uk/netlab/over.php">Overview and 
      Examples</A>
      <HR>
      <A class=link_style 
      href="http://www.ncrg.aston.ac.uk/netlab/intro.php">How to Use</A>
      <HR>
      <A class=link_style 
      href="http://www.ncrg.aston.ac.uk/netlab/book.php">Book and Resources</A>
      <HR>
      <A class=link_style 
      href="http://www.ncrg.aston.ac.uk/netlab/contrib.php">Contributions</A>
      <HR>
      <A class=link_style 
      href="http://www.ncrg.aston.ac.uk/netlab/bugs.php">Bugs</A>
      <HR>
      <A class=link_style 
      href="http://www.ncrg.aston.ac.uk/netlab/links.php">Links</A>
      <HR>
    </TD>
    <TD></TD>
    <TD>
      <H1>Overview and Examples</H1>
      <P>The latest release of Netlab includes the following algorithms: 
      <UL>
        <LI>PCA 
        <LI>Mixtures of probabilistic PCA 
        <LI>Gaussian mixture model with EM training algorithm 
        <LI>Linear and logistic regression with IRLS training algorithm 
        <LI>Multi-layer perceptron with linear, logistic and softmax outputs and 
        appropriate error functions 
        <LI>Radial basis function (RBF) networks with both Gaussian and 
        non-local basis functions 
        <LI>Optimisers, including quasi-Newton methods, conjugate gradients and 
        scaled conjugate gradients 
        <LI>Multi-layer perceptron with Gaussian mixture outputs (mixture 
        density networks) 
        <LI>Gaussian prior distributions over parameters for the MLP, RBF and 
        GLM including multiple hyper-parameters 
        <LI>Laplace approximation framework for Bayesian inference (evidence 
        procedure) 
        <LI>Automatic Relevance Determination for input selection 
        <LI>Markov chain Monte-Carlo including simple Metropolis and hybrid 
        Monte-Carlo 
        <LI>K-nearest neighbour classifier 
        <LI>K-means clustering 
        <LI>Generative Topographic Map 
        <LI>Neuroscale topographic projection 
        <LI>Gaussian Processes 
        <LI>Hinton diagrams for network weights 
        <LI>Self-organising map </LI></UL>The integration with Matlab means that 
      powerful facilities are available to pre-process the data, graph important 
      variables, and visualise results. In addition, Matlab programs that use 
      Netlab are portable across all main platforms and operating systems 
      (including UNIX

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -