📄 rbferr.m
字号:
function [e, edata, eprior] = rbferr(net, x, t)%RBFERR Evaluate error function for RBF network.%% Description% E = RBFERR(NET, X, T) takes a network data structure NET together% with a matrix X of input vectors and a matrix T of target vectors,% and evaluates the appropriate error function E depending on% NET.OUTFN. Each row of X corresponds to one input vector and each% row of T contains the corresponding target vector.%% [E, EDATA, EPRIOR] = RBFERR(NET, X, T) additionally returns the data% and prior components of the error, assuming a zero mean Gaussian% prior on the weights with inverse variance parameters ALPHA and BETA% taken from the network data structure NET.%% See also% RBF, RBFFWD, RBFGRAD, RBFPAK, RBFTRAIN, RBFUNPAK%% Copyright (c) Ian T Nabney (1996-2001)% Check arguments for consistencyswitch net.outfncase 'linear' errstring = consist(net, 'rbf', x, t);case 'neuroscale' errstring = consist(net, 'rbf', x);otherwise error(['Unknown output function ', net.outfn]);endif ~isempty(errstring); error(errstring);endswitch net.outfncase 'linear' y = rbffwd(net, x); edata = 0.5*sum(sum((y - t).^2));case 'neuroscale' y = rbffwd(net, x); y_dist = sqrt(dist2(y, y)); % Take t as target distance matrix edata = 0.5.*(sum(sum((t-y_dist).^2)));otherwise error(['Unknown output function ', net.outfn]);end% Compute Bayesian regularised error[e, edata, eprior] = errbayes(net, edata);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -