📄 mdninit.m
字号:
function net = mdninit(net, prior, t, options)%MDNINIT Initialise the weights in a Mixture Density Network.%% Description%% NET = MDNINIT(NET, PRIOR) takes a Mixture Density Network NET and% sets the weights and biases by sampling from a Gaussian distribution.% It calls MLPINIT for the MLP component of NET.%% NET = MDNINIT(NET, PRIOR, T, OPTIONS) uses the target data T to% initialise the biases for the output units after initialising the% other weights as above. It calls GMMINIT, with T and OPTIONS as% arguments, to obtain a model of the unconditional density of T. The% biases are then set so that NET will output the values in the% Gaussian mixture model.%% See also% MDN, MLP, MLPINIT, GMMINIT%% Copyright (c) Ian T Nabney (1996-2001)% David J Evans (1998)% Initialise network weights from prior: this gives noise around values% determined laternet.mlp = mlpinit(net.mlp, prior);if nargin > 2 % Initialise priors, centres and variances from target data temp_mix = gmm(net.mdnmixes.dim_target, net.mdnmixes.ncentres, 'spherical'); temp_mix = gmminit(temp_mix, t, options); ncentres = net.mdnmixes.ncentres; dim_target = net.mdnmixes.dim_target; % Now set parameters in MLP to yield the right values. % This involves setting the biases correctly. % Priors net.mlp.b2(1:ncentres) = temp_mix.priors; % Centres are arranged in mlp such that we have % u11, u12, u13, ..., u1c, ... , uj1, uj2, uj3, ..., ujc, ..., um1, uM2, % ..., uMc % This is achieved by transposing temp_mix.centres before reshaping end_centres = ncentres*(dim_target+1); net.mlp.b2(ncentres+1:end_centres) = ... reshape(temp_mix.centres', 1, ncentres*dim_target); % Variances net.mlp.b2((end_centres+1):net.mlp.nout) = ... log(temp_mix.covars);end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -