⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mlperr.m

📁 模式识别的主要工具集合
💻 M
字号:
function [e, edata, eprior] = mlperr(net, x, t)%MLPERR	Evaluate error function for 2-layer network.%%	Description%	E = MLPERR(NET, X, T) takes a network data structure NET together%	with a matrix X of input vectors and a matrix T of target vectors,%	and evaluates the error function E. The choice of error function%	corresponds to the output unit activation function. Each row of X%	corresponds to one input vector and each row of T corresponds to one%	target vector.%%	[E, EDATA, EPRIOR] = MLPERR(NET, X, T) additionally returns the data%	and prior components of the error, assuming a zero mean Gaussian%	prior on the weights with inverse variance parameters ALPHA and BETA%	taken from the network data structure NET.%%	See also%	MLP, MLPPAK, MLPUNPAK, MLPFWD, MLPBKP, MLPGRAD%%	Copyright (c) Ian T Nabney (1996-2001)% Check arguments for consistencyerrstring = consist(net, 'mlp', x, t);if ~isempty(errstring);  error(errstring);end[y, z, a] = mlpfwd(net, x);switch net.outfn  case 'linear'        % Linear outputs    edata = 0.5*sum(sum((y - t).^2));  case 'logistic'      % Logistic outputs    % Ensure that log(1-y) is computable: need exp(a) > eps    maxcut = -log(eps);    % Ensure that log(y) is computable    mincut = -log(1/realmin - 1);    a = min(a, maxcut);    a = max(a, mincut);    y = 1./(1 + exp(-a));    edata = - sum(sum(t.*log(y) + (1 - t).*log(1 - y)));  case 'softmax'       % Softmax outputs    nout = size(a,2);    % Ensure that sum(exp(a), 2) does not overflow    maxcut = log(realmax) - log(nout);    % Ensure that exp(a) > 0    mincut = log(realmin);    a = min(a, maxcut);    a = max(a, mincut);    temp = exp(a);    y = temp./(sum(temp, 2)*ones(1,nout));    % Ensure that log(y) is computable    y(y<realmin) = realmin;    edata = - sum(sum(t.*log(y)));  otherwise    error(['Unknown activation function ', net.outfn]);  end[e, edata, eprior] = errbayes(net, edata);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -