📄 mlperr.m
字号:
function [e, edata, eprior] = mlperr(net, x, t)%MLPERR Evaluate error function for 2-layer network.%% Description% E = MLPERR(NET, X, T) takes a network data structure NET together% with a matrix X of input vectors and a matrix T of target vectors,% and evaluates the error function E. The choice of error function% corresponds to the output unit activation function. Each row of X% corresponds to one input vector and each row of T corresponds to one% target vector.%% [E, EDATA, EPRIOR] = MLPERR(NET, X, T) additionally returns the data% and prior components of the error, assuming a zero mean Gaussian% prior on the weights with inverse variance parameters ALPHA and BETA% taken from the network data structure NET.%% See also% MLP, MLPPAK, MLPUNPAK, MLPFWD, MLPBKP, MLPGRAD%% Copyright (c) Ian T Nabney (1996-2001)% Check arguments for consistencyerrstring = consist(net, 'mlp', x, t);if ~isempty(errstring); error(errstring);end[y, z, a] = mlpfwd(net, x);switch net.outfn case 'linear' % Linear outputs edata = 0.5*sum(sum((y - t).^2)); case 'logistic' % Logistic outputs % Ensure that log(1-y) is computable: need exp(a) > eps maxcut = -log(eps); % Ensure that log(y) is computable mincut = -log(1/realmin - 1); a = min(a, maxcut); a = max(a, mincut); y = 1./(1 + exp(-a)); edata = - sum(sum(t.*log(y) + (1 - t).*log(1 - y))); case 'softmax' % Softmax outputs nout = size(a,2); % Ensure that sum(exp(a), 2) does not overflow maxcut = log(realmax) - log(nout); % Ensure that exp(a) > 0 mincut = log(realmin); a = min(a, maxcut); a = max(a, mincut); temp = exp(a); y = temp./(sum(temp, 2)*ones(1,nout)); % Ensure that log(y) is computable y(y<realmin) = realmin; edata = - sum(sum(t.*log(y))); otherwise error(['Unknown activation function ', net.outfn]); end[e, edata, eprior] = errbayes(net, edata);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -