⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rbfhess.m

📁 模式识别的主要工具集合
💻 M
字号:
function [h, hdata] = rbfhess(net, x, t, hdata)%RBFHESS Evaluate the Hessian matrix for RBF network.%%	Description%	H = RBFHESS(NET, X, T) takes an RBF network data structure NET, a%	matrix X of input values, and a matrix T of target values and returns%	the full Hessian matrix H corresponding to the second derivatives of%	the negative log posterior distribution, evaluated for the current%	weight and bias values as defined by NET.  Currently, the%	implementation only computes the Hessian for the output layer%	weights.%%	[H, HDATA] = RBFHESS(NET, X, T) returns both the Hessian matrix H and%	the contribution HDATA arising from the data dependent term in the%	Hessian.%%	H = RBFHESS(NET, X, T, HDATA) takes a network data structure NET, a%	matrix X of input values, and a matrix T of  target values, together%	with the contribution HDATA arising from the data dependent term in%	the Hessian, and returns the full Hessian matrix H corresponding to%	the second derivatives of the negative log posterior distribution.%	This version saves computation time if HDATA has already been%	evaluated for the current weight and bias values.%%	See also%	MLPHESS, HESSCHEK, EVIDENCE%%	Copyright (c) Ian T Nabney (1996-2001)% Check arguments for consistencyerrstring = consist(net, 'rbf', x, t);if ~isempty(errstring);  error(errstring);endif nargin == 3  % Data term in Hessian needs to be computed  [a, z] = rbffwd(net, x);   hdata = datahess(net, z, t);end% Add in effect of regularisation[h, hdata] = hbayes(net, hdata);% Sub-function to compute data part of Hessianfunction hdata = datahess(net, z, t)% Only works for output layer Hessian currentlyif (isfield(net, 'mask') & ~any(net.mask(...      1:(net.nwts - net.nout*(net.nhidden+1)))))  hdata = zeros(net.nwts);  ndata = size(z, 1);  out_hess = [z ones(ndata, 1)]'*[z ones(ndata, 1)];  for j = 1:net.nout    hdata = rearrange_hess(net, j, out_hess, hdata);  endelse  error('Output layer Hessian only.');endreturn% Sub-function to rearrange Hessian matrixfunction hdata = rearrange_hess(net, j, out_hess, hdata)% Because all the biases come after all the input weights,% we have to rearrange the blocks that make up the network Hessian.% This function assumes that we are on the jth output and that all outputs% are independent.% Start of bias weights blockbb_start = net.nwts - net.nout + 1;% Start of weight block for jth outputob_start = net.nwts - net.nout*(net.nhidden+1) + (j-1)*net.nhidden...   + 1; % End of weight block for jth outputob_end = ob_start + net.nhidden - 1; % Index of bias weightb_index = bb_start+(j-1);   % Put input weight block in right placehdata(ob_start:ob_end, ob_start:ob_end) = out_hess(1:net.nhidden, ...   1:net.nhidden);% Put second derivative of bias weight in right placehdata(b_index, b_index) = out_hess(net.nhidden+1, net.nhidden+1);% Put cross terms (input weight v bias weight) in right placehdata(b_index, ob_start:ob_end) = out_hess(net.nhidden+1, ...   1:net.nhidden);hdata(ob_start:ob_end, b_index) = out_hess(1:net.nhidden, ...   net.nhidden+1);return 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -