⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 graddesc.m

📁 模式识别的主要工具集合
💻 M
字号:
function [x, options, flog, pointlog] = graddesc(f, x, options, gradf, ...			varargin)%GRADDESC Gradient descent optimization.%%	Description%	[X, OPTIONS, FLOG, POINTLOG] = GRADDESC(F, X, OPTIONS, GRADF) uses%	batch gradient descent to find a local minimum of the function  F(X)%	whose gradient is given by GRADF(X). A log of the function values%	after each cycle is (optionally) returned in ERRLOG, and a log of the%	points visited is (optionally) returned in POINTLOG.%%	Note that X is a row vector and F returns a scalar value.  The point%	at which F has a local minimum is returned as X.  The function value%	at that point is returned in OPTIONS(8).%%	GRADDESC(F, X, OPTIONS, GRADF, P1, P2, ...) allows  additional%	arguments to be passed to F() and GRADF().%%	The optional parameters have the following interpretations.%%	OPTIONS(1) is set to 1 to display error values; also logs error%	values in the return argument ERRLOG, and the points visited in the%	return argument POINTSLOG. If OPTIONS(1) is set to 0, then only%	warning messages are displayed.  If OPTIONS(1) is -1, then nothing is%	displayed.%%	OPTIONS(2) is the absolute precision required for the value of X at%	the solution.  If the absolute difference between the values of X%	between two successive steps is less than OPTIONS(2), then this%	condition is satisfied.%%	OPTIONS(3) is a measure of the precision required of the objective%	function at the solution.  If the absolute difference between the%	objective function values between two successive steps is less than%	OPTIONS(3), then this condition is satisfied. Both this and the%	previous condition must be satisfied for termination.%%	OPTIONS(7) determines the line minimisation method used.  If it is%	set to 1 then a line minimiser is used (in the direction of the%	negative gradient).  If it is 0 (the default), then each parameter%	update is a fixed multiple (the learning rate) of the negative%	gradient added to a fixed multiple (the momentum) of the previous%	parameter update.%%	OPTIONS(9) should be set to 1 to check the user defined gradient%	function GRADF with GRADCHEK.  This is carried out at the initial%	parameter vector X.%%	OPTIONS(10) returns the total number of function evaluations%	(including those in any line searches).%%	OPTIONS(11) returns the total number of gradient evaluations.%%	OPTIONS(14) is the maximum number of iterations; default 100.%%	OPTIONS(15) is the precision in parameter space of the line search;%	default FOPTIONS(2).%%	OPTIONS(17) is the momentum; default 0.5.  It should be scaled by the%	inverse of the number of data points.%%	OPTIONS(18) is the learning rate; default 0.01.  It should be scaled%	by the inverse of the number of data points.%%	See also%	CONJGRAD, LINEMIN, OLGD, MINBRACK, QUASINEW, SCG%%	Copyright (c) Ian T Nabney (1996-2001)%  Set up the options.if length(options) < 18  error('Options vector too short')endif (options(14))  niters = options(14);else  niters = 100;endline_min_flag = 0; % Flag for line minimisation optionif (round(options(7)) == 1)  % Use line minimisation  line_min_flag = 1;  % Set options for line minimiser  line_options = foptions;  if options(15) > 0    line_options(2) = options(15);  endelse  % Learning rate: must be positive  if (options(18) > 0)    eta = options(18);  else    eta = 0.01;  end  % Momentum term: allow zero momentum  if (options(17) >= 0)    mu = options(17);  else    mu = 0.5;  endend% Check function stringf = fcnchk(f, length(varargin));gradf = fcnchk(gradf, length(varargin));% Display information if options(1) > 0display = options(1) > 0;% Work out if we need to compute f at each iteration.% Needed if using line search or if display results or if termination% criterion requires it.fcneval = (options(7) | display | options(3));%  Check gradientsif (options(9) > 0)  feval('gradchek', x, f, gradf, varargin{:});enddxold = zeros(1, size(x, 2));xold = x;fold = 0; % Must be initialised so that termination test can be performedif fcneval  fnew = feval(f, x, varargin{:});  options(10) = options(10) + 1;  fold = fnew;end%  Main optimization loop.for j = 1:niters  xold = x;  grad = feval(gradf, x, varargin{:});  options(11) = options(11) + 1;  % Increment gradient evaluation counter  if (line_min_flag ~= 1)    dx = mu*dxold - eta*grad;    x =  x + dx;    dxold = dx;    if fcneval      fold = fnew;      fnew = feval(f, x, varargin{:});      options(10) = options(10) + 1;    end  else    sd = - grad./norm(grad);	% New search direction.    fold = fnew;    % Do a line search: normalise search direction to have length 1    [lmin, line_options] = feval('linemin', f, x, sd, fold, ...      line_options, varargin{:});    options(10) = options(10) + line_options(10);    x = xold + lmin*sd;    fnew = line_options(8);  end  if nargout >= 3    flog(j) = fnew;    if nargout >= 4      pointlog(j, :) = x;    end  end  if display    fprintf(1, 'Cycle  %5d  Function %11.8f\n', j, fnew);  end  if (max(abs(x - xold)) < options(2) & abs(fnew - fold) < options(3))    % Termination criteria are met    options(8) = fnew;    return;  endendif fcneval  options(8) = fnew;else  options(8) = feval(f, x, varargin{:});  options(10) = options(10) + 1;endif (options(1) >= 0)  disp(maxitmess);end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -