📄 gtminit.m
字号:
function net = gtminit(net, options, data, samp_type, varargin)%GTMINIT Initialise the weights and latent sample in a GTM.%% Description% NET = GTMINIT(NET, OPTIONS, DATA, SAMPTYPE) takes a GTM NET and% generates a sample of latent data points and sets the centres (and% widths if appropriate) of NET.RBFNET.%% If the SAMPTYPE is 'REGULAR', then regular grids of latent data% points and RBF centres are created. The dimension of the latent data% space must be 1 or 2. For one-dimensional latent space, the% LSAMPSIZE parameter gives the number of latent points and the% RBFSAMPSIZE parameter gives the number of RBF centres. For a two-% dimensional latent space, these parameters must be vectors of length% 2 with the number of points in each of the x and y directions to% create a rectangular grid. The widths of the RBF basis functions are% set by a call to RBFSETFW passing OPTIONS(7) as the scaling% parameter.%% If the SAMPTYPE is 'UNIFORM' or 'GAUSSIAN' then the latent data is% found by sampling from a uniform or Gaussian distribution% correspondingly. The RBF basis function parameters are set by a call% to RBFSETBF with the DATA parameter as dataset and the OPTIONS% vector.%% Finally, the output layer weights of the RBF are initialised by% mapping the mean of the latent variable to the mean of the target% variable, and the L-dimensional latent variale variance to the% variance of the targets along the first L principal components.%% See also% GTM, GTMEM, PCA, RBFSETBF, RBFSETFW%% Copyright (c) Ian T Nabney (1996-2001)% Check for consistencyerrstring = consist(net, 'gtm', data);if ~isempty(errstring) error(errstring);end% Check type of samplestypes = {'regular', 'uniform', 'gaussian'};if (strcmp(samp_type, stypes)) == 0 error('Undefined sample type.')endif net.dim_latent > size(data, 2) error('Latent space dimension must not be greater than data dimension')endnlatent = net.gmmnet.ncentres;nhidden = net.rbfnet.nhidden;% Create latent data sample and set RBF centresswitch samp_typecase 'regular' if nargin ~= 6 error('Regular type must specify latent and RBF shapes'); end l_samp_size = varargin{1}; rbf_samp_size = varargin{2}; if round(l_samp_size) ~= l_samp_size error('Latent sample specification must contain integers') end % Check existence and size of rbf specification if any(size(rbf_samp_size) ~= [1 net.dim_latent]) | ... prod(rbf_samp_size) ~= nhidden error('Incorrect specification of RBF centres') end % Check dimension and type of latent data specification if any(size(l_samp_size) ~= [1 net.dim_latent]) | ... prod(l_samp_size) ~= nlatent error('Incorrect dimension of latent sample spec.') end if net.dim_latent == 1 net.X = [-1:2/(l_samp_size-1):1]'; net.rbfnet.c = [-1:2/(rbf_samp_size-1):1]'; net.rbfnet = rbfsetfw(net.rbfnet, options(7)); elseif net.dim_latent == 2 net.X = gtm_rctg(l_samp_size); net.rbfnet.c = gtm_rctg(rbf_samp_size); net.rbfnet = rbfsetfw(net.rbfnet, options(7)); else error('For regular sample, input dimension must be 1 or 2.') end case {'uniform', 'gaussian'} if strcmp(samp_type, 'uniform') net.X = 2 * (rand(nlatent, net.dim_latent) - 0.5); else % Sample from N(0, 0.25) distribution to ensure most latent % data is inside square net.X = randn(nlatent, net.dim_latent)/2; end net.rbfnet = rbfsetbf(net.rbfnet, options, net.X);otherwise % Shouldn't get here error('Invalid sample type'); end% Latent data sample and basis function parameters chosen.% Now set output weights[PCcoeff, PCvec] = pca(data);% Scale PCs by eigenvaluesA = PCvec(:, 1:net.dim_latent)*diag(sqrt(PCcoeff(1:net.dim_latent)));[temp, Phi] = rbffwd(net.rbfnet, net.X);% Normalise X to ensure 1:1 mapping of variances and calculate weights% as solution of Phi*W = normX*A'normX = (net.X - ones(size(net.X))*diag(mean(net.X)))*diag(1./std(net.X));net.rbfnet.w2 = Phi \ (normX*A');% Bias is mean of target datanet.rbfnet.b2 = mean(data);% Must also set initial value of variance% Find average distance between nearest centres% Ensure that distance of centre to itself is excluded by setting diagonal% entries to realmaxnet.gmmnet.centres = rbffwd(net.rbfnet, net.X);d = dist2(net.gmmnet.centres, net.gmmnet.centres) + ... diag(ones(net.gmmnet.ncentres, 1)*realmax);sigma = mean(min(d))/2;% Now set covariance to minimum of this and next largest eigenvalueif net.dim_latent < size(data, 2) sigma = min(sigma, PCcoeff(net.dim_latent+1));endnet.gmmnet.covars = sigma*ones(1, net.gmmnet.ncentres);% Sub-function to create the sample data in 2dfunction sample = gtm_rctg(samp_size)xDim = samp_size(1);yDim = samp_size(2);% Produce a grid with the right number of rows and columns[X, Y] = meshgrid([0:1:(xDim-1)], [(yDim-1):-1:0]);% Change grid representation sample = [X(:), Y(:)];% Shift grid to correct position and scale itmaxXY= max(sample);sample(:,1) = 2*(sample(:,1) - maxXY(1)/2)./maxXY(1);sample(:,2) = 2*(sample(:,2) - maxXY(2)/2)./maxXY(2);return;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -