⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 contents.m

📁 模式识别的主要工具集合
💻 M
字号:
% Netlab Toolbox% Version 3.3.1 	 18-Jun-2004%% conffig  -  Display a confusion matrix. % confmat  -  Compute a confusion matrix. % conjgrad -  Conjugate gradients optimization. % consist  -  Check that arguments are consistent. % convertoldnet-  Convert pre-2.3 release MLP and MDN nets to new format % datread  -  Read data from an ascii file. % datwrite -  Write data to ascii file. % dem2ddat -  Generates two dimensional data for demos. % demard   -  Automatic relevance determination using the MLP. % demev1   -  Demonstrate Bayesian regression for the MLP. % demev2   -  Demonstrate Bayesian classification for the MLP. % demev3   -  Demonstrate Bayesian regression for the RBF. % demgauss -  Demonstrate sampling from Gaussian distributions. % demglm1  -  Demonstrate simple classification using a generalized linear model. % demglm2  -  Demonstrate simple classification using a generalized linear model. % demgmm1  -  Demonstrate density modelling with a Gaussian mixture model. % demgmm3  -  Demonstrate density modelling with a Gaussian mixture model. % demgmm4  -  Demonstrate density modelling with a Gaussian mixture model. % demgmm5  -  Demonstrate density modelling with a PPCA mixture model. % demgp    -  Demonstrate simple regression using a Gaussian Process. % demgpard -  Demonstrate ARD using a Gaussian Process. % demgpot  -  Computes the gradient of the negative log likelihood for a mixture model. % demgtm1  -  Demonstrate EM for GTM. % demgtm2  -  Demonstrate GTM for visualisation. % demhint  -  Demonstration of Hinton diagram for 2-layer feed-forward network. % demhmc1  -  Demonstrate Hybrid Monte Carlo sampling on mixture of two Gaussians. % demhmc2  -  Demonstrate Bayesian regression with Hybrid Monte Carlo sampling. % demhmc3  -  Demonstrate Bayesian regression with Hybrid Monte Carlo sampling. % demkmean -  Demonstrate simple clustering model trained with K-means. % demknn1  -  Demonstrate nearest neighbour classifier. % demmdn1  -  Demonstrate fitting a multi-valued function using a Mixture Density Network. % demmet1  -  Demonstrate Markov Chain Monte Carlo sampling on a Gaussian. % demmlp1  -  Demonstrate simple regression using a multi-layer perceptron % demmlp2  -  Demonstrate simple classification using a multi-layer perceptron % demnlab  -  A front-end Graphical User Interface to the demos % demns1   -  Demonstrate Neuroscale for visualisation. % demolgd1 -  Demonstrate simple MLP optimisation with on-line gradient descent % demopt1  -  Demonstrate different optimisers on Rosenbrock's function. % dempot   -  Computes the negative log likelihood for a mixture model. % demprgp  -  Demonstrate sampling from a Gaussian Process prior. % demprior -  Demonstrate sampling from a multi-parameter Gaussian prior. % demrbf1  -  Demonstrate simple regression using a radial basis function network. % demsom1  -  Demonstrate SOM for visualisation. % demtrain -  Demonstrate training of MLP network. % dist2    -  Calculates squared distance between two sets of points. % eigdec   -  Sorted eigendecomposition % errbayes -  Evaluate Bayesian error function for network. % evidence -  Re-estimate hyperparameters using evidence approximation. % fevbayes -  Evaluate Bayesian regularisation for network forward propagation. % gauss    -  Evaluate a Gaussian distribution. % gbayes   -  Evaluate gradient of Bayesian error function for network. % glm      -  Create a generalized linear model. % glmderiv -  Evaluate derivatives of GLM outputs with respect to weights. % glmerr   -  Evaluate error function for generalized linear model. % glmevfwd -  Forward propagation with evidence for GLM % glmfwd   -  Forward propagation through generalized linear model. % glmgrad  -  Evaluate gradient of error function for generalized linear model. % glmhess  -  Evaluate the Hessian matrix for a generalised linear model. % glminit  -  Initialise the weights in a generalized linear model. % glmpak   -  Combines weights and biases into one weights vector. % glmtrain -  Specialised training of generalized linear model % glmunpak -  Separates weights vector into weight and bias matrices. % gmm      -  Creates a Gaussian mixture model with specified architecture. % gmmactiv -  Computes the activations of a Gaussian mixture model. % gmmem    -  EM algorithm for Gaussian mixture model. % gmminit  -  Initialises Gaussian mixture model from data % gmmpak   -  Combines all the parameters in a Gaussian mixture model into one vector. % gmmpost  -  Computes the class posterior probabilities of a Gaussian mixture model. % gmmprob  -  Computes the data probability for a Gaussian mixture model. % gmmsamp  -  Sample from a Gaussian mixture distribution. % gmmunpak -  Separates a vector of Gaussian mixture model parameters into its components. % gp       -  Create a Gaussian Process. % gpcovar  -  Calculate the covariance for a Gaussian Process. % gpcovarf -  Calculate the covariance function for a Gaussian Process. % gpcovarp -  Calculate the prior covariance for a Gaussian Process. % gperr    -  Evaluate error function for Gaussian Process. % gpfwd    -  Forward propagation through Gaussian Process. % gpgrad   -  Evaluate error gradient for Gaussian Process. % gpinit   -  Initialise Gaussian Process model. % gppak    -  Combines GP hyperparameters into one vector. % gpunpak  -  Separates hyperparameter vector into components. % gradchek -  Checks a user-defined gradient function using finite differences. % graddesc -  Gradient descent optimization. % gsamp    -  Sample from a Gaussian distribution. % gtm      -  Create a Generative Topographic Map. % gtmem    -  EM algorithm for Generative Topographic Mapping. % gtmfwd   -  Forward propagation through GTM. % gtminit  -  Initialise the weights and latent sample in a GTM. % gtmlmean -  Mean responsibility for data in a GTM. % gtmlmode -  Mode responsibility for data in a GTM. % gtmmag   -  Magnification factors for a GTM % gtmpost  -  Latent space responsibility for data in a GTM. % gtmprob  -  Probability for data under a GTM. % hbayes   -  Evaluate Hessian of Bayesian error function for network. % hesschek -  Use central differences to confirm correct evaluation of Hessian matrix. % hintmat  -  Evaluates the coordinates of the patches for a Hinton diagram. % hinton   -  Plot Hinton diagram for a weight matrix. % histp    -  Histogram estimate of 1-dimensional probability distribution. % hmc      -  Hybrid Monte Carlo sampling. % kmeans   -  Trains a k means cluster model. % knn      -  Creates a K-nearest-neighbour classifier. % knnfwd   -  Forward propagation through a K-nearest-neighbour classifier. % linef    -  Calculate function value along a line. % linemin  -  One dimensional minimization. % maxitmess-  Create a standard error message when training reaches max. iterations. % mdn      -  Creates a Mixture Density Network with specified architecture. % mdn2gmm  -  Converts an MDN mixture data structure to array of GMMs. % mdndist2 -  Calculates squared distance between centres of Gaussian kernels and data % mdnerr   -  Evaluate error function for Mixture Density Network. % mdnfwd   -  Forward propagation through Mixture Density Network. % mdngrad  -  Evaluate gradient of error function for Mixture Density Network. % mdninit  -  Initialise the weights in a Mixture Density Network. % mdnpak   -  Combines weights and biases into one weights vector. % mdnpost  -  Computes the posterior probability for each MDN mixture component. % mdnprob  -  Computes the data probability likelihood for an MDN mixture structure. % mdnunpak -  Separates weights vector into weight and bias matrices. % metrop   -  Markov Chain Monte Carlo sampling with Metropolis algorithm. % minbrack -  Bracket a minimum of a function of one variable. % mlp      -  Create a 2-layer feedforward network. % mlpbkp   -  Backpropagate gradient of error function for 2-layer network. % mlpderiv -  Evaluate derivatives of network outputs with respect to weights. % mlperr   -  Evaluate error function for 2-layer network. % mlpevfwd -  Forward propagation with evidence for MLP % mlpfwd   -  Forward propagation through 2-layer network. % mlpgrad  -  Evaluate gradient of error function for 2-layer network. % mlphdotv -  Evaluate the product of the data Hessian with a vector. % mlphess  -  Evaluate the Hessian matrix for a multi-layer perceptron network. % mlphint  -  Plot Hinton diagram for 2-layer feed-forward network. % mlpinit  -  Initialise the weights in a 2-layer feedforward network. % mlppak   -  Combines weights and biases into one weights vector. % mlpprior -  Create Gaussian prior for mlp. % mlptrain -  Utility to train an MLP network for demtrain % mlpunpak -  Separates weights vector into weight and bias matrices. % netderiv -  Evaluate derivatives of network outputs by weights generically. % neterr   -  Evaluate network error function for generic optimizers % netevfwd -  Generic forward propagation with evidence for network % netgrad  -  Evaluate network error gradient for generic optimizers % nethess  -  Evaluate network Hessian % netinit  -  Initialise the weights in a network. % netopt   -  Optimize the weights in a network model. % netpak   -  Combines weights and biases into one weights vector. % netunpak -  Separates weights vector into weight and bias matrices. % olgd     -  On-line gradient descent optimization. % pca      -  Principal Components Analysis % plotmat  -  Display a matrix. % ppca     -  Probabilistic Principal Components Analysis % quasinew -  Quasi-Newton optimization. % rbf      -  Creates an RBF network with specified architecture % rbfbkp   -  Backpropagate gradient of error function for RBF network. % rbfderiv -  Evaluate derivatives of RBF network outputs with respect to weights. % rbferr   -  Evaluate error function for RBF network. % rbfevfwd -  Forward propagation with evidence for RBF % rbffwd   -  Forward propagation through RBF network with linear outputs. % rbfgrad  -  Evaluate gradient of error function for RBF network. % rbfhess  -  Evaluate the Hessian matrix for RBF network. % rbfjacob -  Evaluate derivatives of RBF network outputs with respect to inputs. % rbfpak   -  Combines all the parameters in an RBF network into one weights vector. % rbfprior -  Create Gaussian prior and output layer mask for RBF. % rbfsetbf -  Set basis functions of RBF from data. % rbfsetfw -  Set basis function widths of RBF. % rbftrain -  Two stage training of RBF network. % rbfunpak -  Separates a vector of RBF weights into its components. % rosegrad -  Calculate gradient of Rosenbrock's function. % rosen    -  Calculate Rosenbrock's function. % scg      -  Scaled conjugate gradient optimization. % som      -  Creates a Self-Organising Map. % somfwd   -  Forward propagation through a Self-Organising Map. % sompak   -  Combines node weights into one weights matrix. % somtrain -  Kohonen training algorithm for SOM. % somunpak -  Replaces node weights in SOM. %%	Copyright (c) Ian T Nabney (1996-2001)%

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -