⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mlpbkp.m

📁 模式识别的主要工具集合
💻 M
字号:
function g = mlpbkp(net, x, z, deltas)%MLPBKP	Backpropagate gradient of error function for 2-layer network.%%	Description%	G = MLPBKP(NET, X, Z, DELTAS) takes a network data structure NET%	together with a matrix X of input vectors, a matrix  Z of hidden unit%	activations, and a matrix DELTAS of the  gradient of the error%	function with respect to the values of the output units (i.e. the%	summed inputs to the output units, before the activation function is%	applied). The return value is the gradient G of the error function%	with respect to the network weights. Each row of X corresponds to one%	input vector.%%	This function is provided so that the common backpropagation%	algorithm can be used by multi-layer perceptron network models to%	compute gradients for mixture density networks as well as standard%	error functions.%%	See also%	MLP, MLPGRAD, MLPDERIV, MDNGRAD%%	Copyright (c) Ian T Nabney (1996-2001)% Evaluate second-layer gradients.gw2 = z'*deltas;gb2 = sum(deltas, 1);% Now do the backpropagation.delhid = deltas*net.w2';delhid = delhid.*(1.0 - z.*z);% Finally, evaluate the first-layer gradients.gw1 = x'*delhid;gb1 = sum(delhid, 1);g = [gw1(:)', gb1, gw2(:)', gb2];

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -