⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gtm.htm

📁 模式识别的主要工具集合
💻 HTM
字号:
<html><head><title>Netlab Reference Manual gtm</title></head><body><H1> gtm</H1><h2>Purpose</h2>Create a Generative Topographic Map.<p><h2>Synopsis</h2><PRE>net = gtm(dimlatent, nlatent, dimdata, ncentres, rbfunc)net = gtm(dimlatent, nlatent, dimdata, ncentres, rbfunc, prior)</PRE><p><h2>Description</h2><p><CODE>net = gtm(dimlatent, nlatent, dimdata, ncentres, rbfunc)</CODE>,takes the dimension of the latent space <CODE>dimlatent</CODE>, thenumber of data points sampled in the latent space <CODE>nlatent</CODE>, thedimension of the data space <CODE>dimdata</CODE>, the number of centres in theRBF model <CODE>ncentres</CODE>, the activation function for the RBF<CODE>rbfunc</CODE>and returns a data structure <CODE>net</CODE>. The parameters in theRBF and GMM sub-models are set by calls to the corresponding creation routines<CODE>rbf</CODE> and <CODE>gmm</CODE>.<p>The fields in <CODE>net</CODE> are<PRE>  type = 'gtm'  nin = dimension of data space  dimlatent = dimension of latent space  rbfnet = RBF network data structure  gmmnet = GMM data structure  X = sample of latent points</PRE><p><CODE>net = gtm(dimlatent, nlatent, dimdata, ncentres, rbfunc, prior)</CODE>, sets a Gaussian zero mean prior on theparameters of the RBF model. <CODE>prior</CODE> must be a scalar and representsthe inverse variance of the prior distribution.  This gives rise toa weight decay term in the error function.<p><h2>See Also</h2><CODE><a href="gtmfwd.htm">gtmfwd</a></CODE>, <CODE><a href="gtmpost.htm">gtmpost</a></CODE>, <CODE><a href="rbf.htm">rbf</a></CODE>, <CODE><a href="gmm.htm">gmm</a></CODE><hr><b>Pages:</b><a href="index.htm">Index</a><hr><p>Copyright (c) Ian T Nabney (1996-9)</body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -