⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 glmevfwd.htm

📁 模式识别的主要工具集合
💻 HTM
字号:
<html><head><title>Netlab Reference Manual glmevfwd</title></head><body><H1> glmevfwd</H1><h2>Purpose</h2>Forward propagation with evidence for GLM<p><h2>Synopsis</h2><PRE>[y, extra] = glmevfwd(net, x, t, x_test)[y, extra, invhess] = glmevfwd(net, x, t, x_test, invhess)</PRE><p><h2>Description</h2><CODE>y = glmevfwd(net, x, t, x_test)</CODE> takes a network data structure <CODE>net</CODE> together with the input <CODE>x</CODE> and target <CODE>t</CODE> training dataand input test data <CODE>x_test</CODE>.It returns the normal forward propagation through the network <CODE>y</CODE>together with a matrix <CODE>extra</CODE> which consists of error bars (variance)for a regression problem or moderated outputs for a classification problem.<p>The optional argument (and return value) <CODE>invhess</CODE> is the inverse of the network Hessiancomputed on the training data inputs and targets.  Passing it in avoidsrecomputing it, which can be a significant saving for large training sets.<p><h2>See Also</h2><CODE><a href="fevbayes.htm">fevbayes</a></CODE><hr><b>Pages:</b><a href="index.htm">Index</a><hr><p>Copyright (c) Ian T Nabney (1996-9)</body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -