📄 index.htm
字号:
Gradient descent optimization. <DT><CODE><a href="gsamp.htm">gsamp</a></CODE><DD> Sample from a Gaussian distribution. <DT><CODE><a href="gtm.htm">gtm</a></CODE><DD> Create a Generative Topographic Map. <DT><CODE><a href="gtmem.htm">gtmem</a></CODE><DD> EM algorithm for Generative Topographic Mapping. <DT><CODE><a href="gtmfwd.htm">gtmfwd</a></CODE><DD> Forward propagation through GTM. <DT><CODE><a href="gtminit.htm">gtminit</a></CODE><DD> Initialise the weights and latent sample in a GTM. <DT><CODE><a href="gtmlmean.htm">gtmlmean</a></CODE><DD> Mean responsibility for data in a GTM. <DT><CODE><a href="gtmlmode.htm">gtmlmode</a></CODE><DD> Mode responsibility for data in a GTM. <DT><CODE><a href="gtmmag.htm">gtmmag</a></CODE><DD> Magnification factors for a GTM <DT><CODE><a href="gtmpost.htm">gtmpost</a></CODE><DD> Latent space responsibility for data in a GTM. <DT><CODE><a href="gtmprob.htm">gtmprob</a></CODE><DD> Probability for data under a GTM. <DT><CODE><a href="hbayes.htm">hbayes</a></CODE><DD> Evaluate Hessian of Bayesian error function for network. <DT><CODE><a href="hesschek.htm">hesschek</a></CODE><DD> Use central differences to confirm correct evaluation of Hessian matrix. <DT><CODE><a href="hintmat.htm">hintmat</a></CODE><DD> Evaluates the coordinates of the patches for a Hinton diagram. <DT><CODE><a href="hinton.htm">hinton</a></CODE><DD> Plot Hinton diagram for a weight matrix. <DT><CODE><a href="histp.htm">histp</a></CODE><DD> Histogram estimate of 1-dimensional probability distribution. <DT><CODE><a href="hmc.htm">hmc</a></CODE><DD> Hybrid Monte Carlo sampling. <DT><CODE><a href="kmeans.htm">kmeans</a></CODE><DD> Trains a k means cluster model. <DT><CODE><a href="knn.htm">knn</a></CODE><DD> Creates a K-nearest-neighbour classifier. <DT><CODE><a href="knnfwd.htm">knnfwd</a></CODE><DD> Forward propagation through a K-nearest-neighbour classifier. <DT><CODE><a href="linef.htm">linef</a></CODE><DD> Calculate function value along a line. <DT><CODE><a href="linemin.htm">linemin</a></CODE><DD> One dimensional minimization. <DT><CODE><a href="maxitmess.htm">maxitmess</a></CODE><DD> Create a standard error message when training reaches max. iterations. <DT><CODE><a href="mdn.htm">mdn</a></CODE><DD> Creates a Mixture Density Network with specified architecture. <DT><CODE><a href="mdn2gmm.htm">mdn2gmm</a></CODE><DD> Converts an MDN mixture data structure to array of GMMs. <DT><CODE><a href="mdndist2.htm">mdndist2</a></CODE><DD> Calculates squared distance between centres of Gaussian kernels and data <DT><CODE><a href="mdnerr.htm">mdnerr</a></CODE><DD> Evaluate error function for Mixture Density Network. <DT><CODE><a href="mdnfwd.htm">mdnfwd</a></CODE><DD> Forward propagation through Mixture Density Network. <DT><CODE><a href="mdngrad.htm">mdngrad</a></CODE><DD> Evaluate gradient of error function for Mixture Density Network. <DT><CODE><a href="mdninit.htm">mdninit</a></CODE><DD> Initialise the weights in a Mixture Density Network. <DT><CODE><a href="mdnpak.htm">mdnpak</a></CODE><DD> Combines weights and biases into one weights vector. <DT><CODE><a href="mdnpost.htm">mdnpost</a></CODE><DD> Computes the posterior probability for each MDN mixture component. <DT><CODE><a href="mdnprob.htm">mdnprob</a></CODE><DD> Computes the data probability likelihood for an MDN mixture structure. <DT><CODE><a href="mdnunpak.htm">mdnunpak</a></CODE><DD> Separates weights vector into weight and bias matrices. <DT><CODE><a href="metrop.htm">metrop</a></CODE><DD> Markov Chain Monte Carlo sampling with Metropolis algorithm. <DT><CODE><a href="minbrack.htm">minbrack</a></CODE><DD> Bracket a minimum of a function of one variable. <DT><CODE><a href="mlp.htm">mlp</a></CODE><DD> Create a 2-layer feedforward network. <DT><CODE><a href="mlpbkp.htm">mlpbkp</a></CODE><DD> Backpropagate gradient of error function for 2-layer network. <DT><CODE><a href="mlpderiv.htm">mlpderiv</a></CODE><DD> Evaluate derivatives of network outputs with respect to weights. <DT><CODE><a href="mlperr.htm">mlperr</a></CODE><DD> Evaluate error function for 2-layer network. <DT><CODE><a href="mlpevfwd.htm">mlpevfwd</a></CODE><DD> Forward propagation with evidence for MLP <DT><CODE><a href="mlpfwd.htm">mlpfwd</a></CODE><DD> Forward propagation through 2-layer network. <DT><CODE><a href="mlpgrad.htm">mlpgrad</a></CODE><DD> Evaluate gradient of error function for 2-layer network. <DT><CODE><a href="mlphdotv.htm">mlphdotv</a></CODE><DD> Evaluate the product of the data Hessian with a vector. <DT><CODE><a href="mlphess.htm">mlphess</a></CODE><DD> Evaluate the Hessian matrix for a multi-layer perceptron network. <DT><CODE><a href="mlphint.htm">mlphint</a></CODE><DD> Plot Hinton diagram for 2-layer feed-forward network. <DT><CODE><a href="mlpinit.htm">mlpinit</a></CODE><DD> Initialise the weights in a 2-layer feedforward network. <DT><CODE><a href="mlppak.htm">mlppak</a></CODE><DD> Combines weights and biases into one weights vector. <DT><CODE><a href="mlpprior.htm">mlpprior</a></CODE><DD> Create Gaussian prior for mlp. <DT><CODE><a href="mlptrain.htm">mlptrain</a></CODE><DD> Utility to train an MLP network for demtrain <DT><CODE><a href="mlpunpak.htm">mlpunpak</a></CODE><DD> Separates weights vector into weight and bias matrices. <DT><CODE><a href="netderiv.htm">netderiv</a></CODE><DD> Evaluate derivatives of network outputs by weights generically. <DT><CODE><a href="neterr.htm">neterr</a></CODE><DD> Evaluate network error function for generic optimizers <DT><CODE><a href="netevfwd.htm">netevfwd</a></CODE><DD> Generic forward propagation with evidence for network <DT><CODE><a href="netgrad.htm">netgrad</a></CODE><DD> Evaluate network error gradient for generic optimizers <DT><CODE><a href="nethess.htm">nethess</a></CODE><DD> Evaluate network Hessian <DT><CODE><a href="netinit.htm">netinit</a></CODE><DD> Initialise the weights in a network. <DT><CODE><a href="netopt.htm">netopt</a></CODE><DD> Optimize the weights in a network model. <DT><CODE><a href="netpak.htm">netpak</a></CODE><DD> Combines weights and biases into one weights vector. <DT><CODE><a href="netunpak.htm">netunpak</a></CODE><DD> Separates weights vector into weight and bias matrices. <DT><CODE><a href="olgd.htm">olgd</a></CODE><DD> On-line gradient descent optimization. <DT><CODE><a href="pca.htm">pca</a></CODE><DD> Principal Components Analysis <DT><CODE><a href="plotmat.htm">plotmat</a></CODE><DD> Display a matrix. <DT><CODE><a href="ppca.htm">ppca</a></CODE><DD> Probabilistic Principal Components Analysis <DT><CODE><a href="quasinew.htm">quasinew</a></CODE><DD> Quasi-Newton optimization. <DT><CODE><a href="rbf.htm">rbf</a></CODE><DD> Creates an RBF network with specified architecture <DT><CODE><a href="rbfbkp.htm">rbfbkp</a></CODE><DD> Backpropagate gradient of error function for RBF network. <DT><CODE><a href="rbfderiv.htm">rbfderiv</a></CODE><DD> Evaluate derivatives of RBF network outputs with respect to weights. <DT><CODE><a href="rbferr.htm">rbferr</a></CODE><DD> Evaluate error function for RBF network. <DT><CODE><a href="rbfevfwd.htm">rbfevfwd</a></CODE><DD> Forward propagation with evidence for RBF <DT><CODE><a href="rbffwd.htm">rbffwd</a></CODE><DD> Forward propagation through RBF network with linear outputs. <DT><CODE><a href="rbfgrad.htm">rbfgrad</a></CODE><DD> Evaluate gradient of error function for RBF network. <DT><CODE><a href="rbfhess.htm">rbfhess</a></CODE><DD> Evaluate the Hessian matrix for RBF network. <DT><CODE><a href="rbfjacob.htm">rbfjacob</a></CODE><DD> Evaluate derivatives of RBF network outputs with respect to inputs. <DT><CODE><a href="rbfpak.htm">rbfpak</a></CODE><DD> Combines all the parameters in an RBF network into one weights vector. <DT><CODE><a href="rbfprior.htm">rbfprior</a></CODE><DD> Create Gaussian prior and output layer mask for RBF. <DT><CODE><a href="rbfsetbf.htm">rbfsetbf</a></CODE><DD> Set basis functions of RBF from data. <DT><CODE><a href="rbfsetfw.htm">rbfsetfw</a></CODE><DD> Set basis function widths of RBF. <DT><CODE><a href="rbftrain.htm">rbftrain</a></CODE><DD> Two stage training of RBF network. <DT><CODE><a href="rbfunpak.htm">rbfunpak</a></CODE><DD> Separates a vector of RBF weights into its components. <DT><CODE><a href="rosegrad.htm">rosegrad</a></CODE><DD> Calculate gradient of Rosenbrock's function. <DT><CODE><a href="rosen.htm">rosen</a></CODE><DD> Calculate Rosenbrock's function. <DT><CODE><a href="scg.htm">scg</a></CODE><DD> Scaled conjugate gradient optimization. <DT><CODE><a href="som.htm">som</a></CODE><DD> Creates a Self-Organising Map. <DT><CODE><a href="somfwd.htm">somfwd</a></CODE><DD> Forward propagation through a Self-Organising Map. <DT><CODE><a href="sompak.htm">sompak</a></CODE><DD> Combines node weights into one weights matrix. <DT><CODE><a href="somtrain.htm">somtrain</a></CODE><DD> Kohonen training algorithm for SOM. <DT><CODE><a href="somunpak.htm">somunpak</a></CODE><DD> Replaces node weights in SOM. </DL><hr><p>Copyright (c) Christopher M Bishop, Ian T Nabney (1996, 1997)</body></html>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -