⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gpfwd.htm

📁 模式识别的主要工具集合
💻 HTM
字号:
<html><head><title>Netlab Reference Manual gpfwd</title></head><body><H1> gpfwd</H1><h2>Purpose</h2>Forward propagation through Gaussian Process.<p><h2>Synopsis</h2><PRE>y = gpfwd(net, x)[y, sigsq] = gpfwd(net, x)[y, sigsq] = gpfwd(net, x, cninv)</PRE><p><h2>Description</h2><CODE>y = gpfwd(net, x)</CODE> takes a Gaussian Process data structure <CODE>net</CODE> together with a matrix <CODE>x</CODE> of input vectors, and forward propagates the inputsthrough the model to generate a matrix <CODE>y</CODE> of outputvectors.  Each row of <CODE>x</CODE> corresponds to one input vector and eachrow of <CODE>y</CODE> corresponds to one output vector.  This assumes that thetraining data (both inputs and targets) has been stored in <CODE>net</CODE> bya call to <CODE>gpinit</CODE>; these are needed to compute the trainingdata covariance matrix.<p><CODE>[y, sigsq] = gpfwd(net, x)</CODE> also generates a column vector <CODE>sigsq</CODE> ofconditional variances (or squared error bars) where each value corresponds to a pattern.<p><CODE>[y, sigsq] = gpfwd(net, x, cninv)</CODE> uses the pre-computed inverse covariancematrix <CODE>cninv</CODE> in the forward propagation.  This increases efficiency ifseveral calls to <CODE>gpfwd</CODE> are made.  <p><h2>Example</h2>The following code creates a Gaussian Process, trains it, and then plots thepredictions on a test set with one standard deviation error bars:<PRE>net = gp(1, 'sqexp');net = gpinit(net, x, t);net = netopt(net, options, x, t, 'scg');[pred, sigsq] = gpfwd(net, xtest);plot(xtest, pred, '-k');hold onplot(xtest, pred+sqrt(sigsq), '-b', xtest, pred-sqrt(sigsq), '-b');</PRE><p><h2>See Also</h2><CODE><a href="gp.htm">gp</a></CODE>, <CODE><a href="demgp.htm">demgp</a></CODE>, <CODE><a href="gpinit.htm">gpinit</a></CODE><hr><b>Pages:</b><a href="index.htm">Index</a><hr><p>Copyright (c) Ian T Nabney (1996-9)</body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -