📄 vector.cpp
字号:
#include "Vector.h"
#include "..\System\fsqrt.h"
#include "..\System\imath.h"
const Vector4s::Type kNullvector[4] = {0,0,0,0};
/*
// ---------------------------------------------------------------------------
//
// ---------------------------------------------------------------------------
Vector2s::Type Vector2s::Length() const
{
return FSqrt(Length2());
}
// ---------------------------------------------------------------------------
// check if a point is on the right side of a vector (a vector from the
// origin to vec and behond)
// Right side while looking in the direction of the vector
// ---------------------------------------------------------------------------
bool Vector2s::RightSide(const Vector2s& vec,const Vector2s& point)
{
const Type d = Dot(vec.Normal(),point);
return d <= 0;
}
//
// ---------------------------------------------------------------------------
//
// ---------------------------------------------------------------------------
const Vector4s& Vector4s::NullVector()
{
return *((const Vector4s*)kNullvector);
}
#ifdef WIN_DEBUG
// ---------------------------------------------------------------------------
//
// ---------------------------------------------------------------------------
void _CheckLimit(double val)
{
SYS_ASSERT(val <= double(INT_MAX) && val >= double(INT_MIN));
};
#endif
// ---------------------------------------------------------------------------
//
// ---------------------------------------------------------------------------
void Vector2s::Normalize()
{
CHK_MULT(x,x);
CHK_MULT(y,y);
CHECK_LIMIT( double(x) * double(1<<COS_SIN_SHIFT));
CHECK_LIMIT( double(y) * double(1<<COS_SIN_SHIFT));
const int Dist2 = (x*x) + (y*y); // 2*COS_SIN_SHIFT bits average result for trigo vectors
const int Dist = FSqrt(Dist2);
x = (x << COS_SIN_SHIFT) / Dist;
y = (y << COS_SIN_SHIFT) / Dist;
}
// vector used as 3D array index
int Vector4s::LinIndex(int Ix, int Iy, int Iz)
{
int LinearIndex = Ix*(y*z) + Iy*z + Iz;
return LinearIndex;
}
*/
void Vector4s::Scale(int s)
{
CHK_MULT(s,x);CHK_MULT(s,y);CHK_MULT(s,z);
x = ((s * x) >> COS_SIN_SHIFT);
y = ((s * y) >> COS_SIN_SHIFT);
z = ((s * z) >> COS_SIN_SHIFT);
}
// get min values
void Vector4s::getMin(const Vector4s *v2)
{
if (v2->x < x) x = v2->x;
if (v2->y < y) y = v2->y;
if (v2->z < z) z = v2->z;
}
// get max values
void Vector4s::getMax(const Vector4s *v2)
{
if (v2->x > x) x = v2->x;
if (v2->y > y) y = v2->y;
if (v2->z > z) z = v2->z;
}
// cross product with v2, result -> v3
// at least one of the 2 vectors must be normalized, result is normalized
void Vector4s::CrossShift(const Vector4s *V2, Vector4s *Res)const
{
CHK_MULT(y , V2->z);CHK_MULT(z , V2->y);
CHK_MULT(z , V2->x);CHK_MULT(x , V2->z);
CHK_MULT(x , V2->y);CHK_MULT(y , V2->x);
Res->x = ((int)y * V2->z - (int)z * V2->y) >> COS_SIN_SHIFT;
Res->y = ((int)z * V2->x - (int)x * V2->z) >> COS_SIN_SHIFT;
Res->z = ((int)x * V2->y - (int)y * V2->x) >> COS_SIN_SHIFT;
}
// ---------------------------------------------------------------------------
//
// ---------------------------------------------------------------------------
// integer normalize, can be used for rotation vectors
void Vector4s::Normalize()
{
CHK_MULT(x,x);
CHK_MULT(y,y);
CHK_MULT(z,z);
if (x==0 && y==0 && z== 0)
return;
// normalize x
int shift = 0;
if (ABS(x) > (2<<15) || ABS(y) > (2<<15) || ABS(z) > (2<<15))
{
x>>=8;
y>>=8;
z>>=8;
}
int Dist2 = (x*x) + (y*y) + (z*z); // 2*COS_SIN_SHIFT bits average result for rot vectors
int Dist = FSqrt(Dist2, shift);
x = ((int)x << COS_SIN_SHIFT <<shift) / Dist;
y = ((int)y << COS_SIN_SHIFT <<shift) / Dist;
z = ((int)z << COS_SIN_SHIFT <<shift) / Dist;
}
/*
// ---------------------------------------------------------------------------
// static
// ---------------------------------------------------------------------------
const int* Vector4s::GetReciprocalAxis(int axis)
{
const static int kPlanes[3][2] = {{1,2},{0,2},{0,1}};
SYS_ASSERT(axis>=0 && axis < 3);
return kPlanes[axis];
}
int Vector4s::GetMainAxis() const
{
const Type x1 = Abs(x);
const Type y1 = Abs(y);
const Type z1 = Abs(z);
if(x1 >= y1)
{
if( x1 >= z1)
return 0;
else
return 2;
}
else
{
if(y1 >= z1)
return 1;
else
return 2;
}
}
*/
// ---------------------------------------------------------------------------
//
// ---------------------------------------------------------------------------
void Vector4s::SelfRotateY(int a)
{
const Type s = Sinus(a);
const Type c = Cosinus(a);
const int x1 = (x*c + z*s + HALF_PRECISION) >> COS_SIN_SHIFT;
z = (x*-s + z*c + HALF_PRECISION) >> COS_SIN_SHIFT;
x = x1;
}
// ---------------------------------------------------------------------------
//
// ---------------------------------------------------------------------------
Vector4s Vector4s::GetRotatedY(int a) const
{
const Type s = Sinus(a);
const Type c = Cosinus(a);
return Vector4s( (x*c + z*s + HALF_PRECISION) >> COS_SIN_SHIFT,
y,
(x*-s + z*c + HALF_PRECISION) >> COS_SIN_SHIFT);
}
// ---------------------------------------------------------------------------
//
// ---------------------------------------------------------------------------
Vector4s Vector4s::GetProjection(const Vector4s& v, const Vector4s& normal)
{
Vector4s proj = normal;
proj.Normalize();
int nDot = Dot(v, proj);
nDot >>= COS_SIN_SHIFT;
proj.x = proj.x * nDot >> COS_SIN_SHIFT;
proj.y = proj.y * nDot >> COS_SIN_SHIFT;
proj.z = proj.z * nDot >> COS_SIN_SHIFT;
return proj;
}
// ---------------------------------------------------------------------------
//
// ---------------------------------------------------------------------------
Vector4s Vector4s::GetReflexion(const Vector4s& v, const Vector4s& normal)
{
Vector4s proj = GetProjection(v, normal);
return proj + (proj - v);
}
/*
// ---------------------------------------------------------------------------
//
// ---------------------------------------------------------------------------
void Vector2s::SelfRotate(int a)
{
const Type s = Sinus(a);
const Type c = Cosinus(a);
const int x1 = (x*c + y*s + HALF_PRECISION) >> COS_SIN_SHIFT;
y = (x*-s + y*c + HALF_PRECISION) >> COS_SIN_SHIFT;
x = x1;
}
// ---------------------------------------------------------------------------
//
// ---------------------------------------------------------------------------
Vector2s Vector2s::GetRotated(int a) const
{
const Type s = Sinus(a);
const Type c = Cosinus(a);
return Vector2s( (x*c + y*s + HALF_PRECISION) >> COS_SIN_SHIFT,
(x*-s + y*c + HALF_PRECISION) >> COS_SIN_SHIFT);
}
*/
/*
// ---------------------------------------------------------------------------
//
// ---------------------------------------------------------------------------
bool RayPlaneInter(const Vector4s& tA,const Vector4s& normal,const Vector4s& rO,const Vector4s& rV,Vector4s& o_point)
{
int n_dot_v = Vector4s::Dot(normal,rV);
if(n_dot_v!=0) // Test Paralelism
{
Vector4s Q = rO - tA; // Segment origin, when translated to make d==0
int n_dot_q = Vector4s::Dot(normal,Q);
int t;
{
// All this code just for a division !!!
if(n_dot_q < 0)
{
n_dot_q = -n_dot_q;
n_dot_v = -n_dot_v;
}
if(n_dot_q &0x7F800000)
{
t = -n_dot_q / DownShift16(n_dot_v);
}
else if(n_dot_q & 0x007F8000)
t = -(n_dot_q<<8) / DownShift8(n_dot_v);
else
t = -(n_dot_q<<16) / n_dot_v;
CHK_PRECISION(-double(n_dot_q) * (1<<16) / n_dot_v, t, 5);
}
// insert "t" in the line equation;
// We do not check if t is restricted to the
// segment since we already checked if both end
// of the segment are on separate side of the plane
o_point.Init( DownShift16(rV.x * t) + rO.x,
DownShift16(rV.y * t) + rO.y,
DownShift16(rV.z * t) + rO.z);
return true;
}
return false;
}
*/
/*
// ---------------------------------------------------------------------------
//
// ---------------------------------------------------------------------------
bool RaytriangleIntersect(const Vector4s& tA,const Vector4s& tB,const Vector4s& tC,const Vector4s& normal, // Triangles vertexes and Normal
const Vector4s& rO,const Vector4s& rV, // Ray Origin and Direction
bool doubleSided)
{
{ // 1- Check if both points (src and dst) are on the same side of the plane:
// also check if the source is on the front side (backface culling)
const bool c1 = FrontSide(tA,normal,rO);
if(c1 ==false && !doubleSided)
return false;
const bool c2 = FrontSide(tA,normal,rO + rV);
if(c1==c2)
return false;
}
Vector4s point;
if(RayPlaneInter(tA,normal,rO,rV,point))
{
const int* raxis = Vector4s::GetReciprocalAxis(normal.GetMainAxis());
const Vector2s p0 = point.GetVector2s(raxis);
const Vector2s pa = tA.GetVector2s(raxis);
const Vector2s pb = tB.GetVector2s(raxis);
const Vector2s pc = tC.GetVector2s(raxis);
// If the point is on the same side of each of these vectors,
// it means it is inside the polygon.
int d1 = Vector2s::Dot((pb-pa).Normal(),(p0-pa));
int d2 = Vector2s::Dot((pc-pb).Normal(), (p0-pb));
if ((d1 <= 0 && d2 <= 0) || (d1 >= 0 && d2 >= 0))
{
int d3 = Vector2s::Dot((pa-pc).Normal(), (p0-pc));
if ((d1 <= 0 && d2 <= 0 && d3 <= 0) || (d1 >= 0 && d2 >= 0 && d3 >= 0))
{
return true;
}
}
}
return false;
}
*/
/*
// ---------------------------------------------------------------------------
//
// ---------------------------------------------------------------------------
int FindRaytriangleIntersectionPoint( const Vector4s& tA,const Vector4s& tB,const Vector4s& tC,const Vector4s& normal, // Triangles vertexes and Normal
const Vector4s& rO,Vector4s& dst, // Ray Origin and destination
bool doubleSided)
{
{ // 1- Check if both points (src and dst) are on the same side of the plane:
// also check if the source is on the front side (backface culling)
const bool c1 = FrontSide(tA,normal,rO);
if(c1 ==false && !doubleSided)
return INT_MAX;
const bool c2 = FrontSide(tA,normal,dst);
if(c1==c2)
return INT_MAX;
}
Vector4s point;
if(RayPlaneInter(tA,normal,rO,dst - rO,point))
{
const int minDist = (dst - rO).Length2();
const int dist2 = (point - rO).Length2();
if(dist2 < minDist)
{
const int* raxis = Vector4s::GetReciprocalAxis(normal.GetMainAxis());
const Vector2s p0 = point.GetVector2s(raxis);
const Vector2s pa = tA.GetVector2s(raxis);
const Vector2s pb = tB.GetVector2s(raxis);
const Vector2s pc = tC.GetVector2s(raxis);
// If the point is on the same side of each of these vectors,
// it means it is inside the polygon.
int d1 = Vector2s::Dot((pb-pa).Normal(),(p0-pa));
int d2 = Vector2s::Dot((pc-pb).Normal(), (p0-pb));
if ((d1 <= 0 && d2 <= 0) || (d1 >= 0 && d2 >= 0))
{
int d3 = Vector2s::Dot((pa-pc).Normal(), (p0-pc));
if ((d1 <= 0 && d2 <= 0 && d3 <= 0) || (d1 >= 0 && d2 >= 0 && d3 >= 0))
{
dst = point;
return dist2;
}
}
}
}
return INT_MAX;
}
*/
// ---------------------------------------------------------------------------
//
// ---------------------------------------------------------------------------
/*
// ---------------------------------------------------------------------------
//
// ---------------------------------------------------------------------------
bool Vector2s::Intersect(const Vector2s& A,const Vector2s& B,const Vector2s& C,const Vector2s& D)
{
SYS_ASSERT(A.x <= B.x && C.x <= D.x);
const int BAx = B.x-A.x;
const int BAy = B.y-A.y;
const int DCx = D.x-C.x;
const int DCz = D.y-C.y;
const int d = BAx*DCz - BAy*DCx;
if(d==0) // Parellel
return false;
const int ACz = A.y - C.y;
const int ACx = A.x - C.x;
const int r = ACz*DCx - ACx*DCz;
const int s = ACz*BAx - ACx*BAy;
if(d<0)
{
if( r<=0 && r>=d && s<=0 && s>=d)
return true;
}
else
{
if( r>=0 && r<=d && s>=0 && s<=d)
return true;
}
return false;
}
*/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -