⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 abstractsupergenetest.java

📁 java实现的遗传算法
💻 JAVA
字号:
/*
 * This file is part of JGAP.
 *
 * JGAP offers a dual license model containing the LGPL as well as the MPL.
 *
 * For licencing information please see the file license.txt included with JGAP
 * or have a look at the top of class org.jgap.Chromosome which representatively
 * includes the JGAP license policy applicable for any file delivered with JGAP.
 */
package org.jgap.supergenes;

import org.jgap.*;
import org.jgap.impl.*;

/** Abstract class for testing Supergene performance.
 *
 * @author Neil Rotstan
 * @author Klaus Meffert
 * @author Audrius Meskauskas (subsequent adaptation)
 * @since 2.0
 * */
abstract class AbstractSupergeneTest {
  /** String containing the CVS revision. Read out via reflection!*/
  private static final String CVS_REVISION = "$Revision: 1.1 $";

  /**
   * Gene index for the dimes gene
   */
  public static final int DIMES = 0;

  /**
   * Gene index for the quarters gene.
   */
  public static final int QUARTERS = 1;

  /**
   * Gene index for the nickels gene
   * Only used in the alternative presentation  */
  public static final int NICKELS = 2;

  /**
   * Gene index for the pennies gene.
   * Only used in the alternative presentation  */
  public static final int PENNIES = 3;

  /**
   * The total number of times we'll let the population evolve.
   */
  public static int MAX_ALLOWED_EVOLUTIONS = 200;

  /**
   * Chromosome size.
   */
  public static int POPULATION_SIZE = 2000;

  /**
   * @return Created Dimes gene instance.
   */
  protected Gene getDimesGene() {
    return new IntegerGene(0, 2); // 10?
  };

  /**
   * @return Created Nickels gene instance.
   */
  protected Gene getNickelsGene() {
    return new IntegerGene(0, 5);
  }

  /**
   * @return Created Pennies (1) gene instance.
   */
  protected Gene getPenniesGene() {
    return new IntegerGene(0, 7);
  }

  /**
   * @return Created Quarters gene instance.
   */
  protected Gene getQuartersGene() {
    return new IntegerGene(0, 3);
  }

  /** Compute the money value from the coin information. */
  public static int amountOfChange
      (int numQuarters, int numDimes, int numNickels, int numPennies) {
    return
        (numQuarters * 25) + (numDimes * 10) + (numNickels * 5) + numPennies;
  };

  /**
   * Executes the genetic algorithm to determine the minimum number of
   * coins necessary to make up the given target amount of change. The
   * solution will then be written to System.out.
   *
   * @param a_targetChangeAmount The target amount of change for which this
   * method is attempting to produce the minimum number of coins
   *
   * @return absolute difference between the required and computed change
   * amount
   * @throws Exception
   */
  public abstract int makeChangeForAmount(int a_targetChangeAmount)
      throws Exception;

  public static boolean REPORT_ENABLED = true;

  /**
   * Write report on eveluation to the given stream.
   * @param a_fitnessFunction p_SupergeneChangeFitnessFunction
   * @param a_population Genotype
   * @return Chromosome
   */
  public Chromosome report(SupergeneChangeFitnessFunction a_fitnessFunction,
                           Genotype a_population) {
    Chromosome bestSolutionSoFar = a_population.getFittestChromosome();
    if (!REPORT_ENABLED) {
      return bestSolutionSoFar;
    }
    System.out.println("\nThe best solution has a fitness value of " +
                       bestSolutionSoFar.getFitnessValue());
    System.out.println("It contained the following: ");
    System.out.println("\t" +
                       a_fitnessFunction.
                       getNumberOfCoinsAtGene(
        bestSolutionSoFar, QUARTERS) + " quarters.");
    System.out.println("\t" +
                       a_fitnessFunction.
                       getNumberOfCoinsAtGene(
        bestSolutionSoFar, DIMES) + " dimes.");
    System.out.println("\t" +
                       a_fitnessFunction.
                       getNumberOfCoinsAtGene(
        bestSolutionSoFar, NICKELS) + " nickels.");
    System.out.println("\t" +
                       a_fitnessFunction.
                       getNumberOfCoinsAtGene(
        bestSolutionSoFar, PENNIES) + " pennies.");
    System.out.println("For a total of " +
                       a_fitnessFunction.amountOfChange(
        bestSolutionSoFar) + " cents in " +
                       a_fitnessFunction.
                       getTotalNumberOfCoins(
        bestSolutionSoFar) + " coins.");
    return bestSolutionSoFar;
  }

  /**
   * If set to true (required for strict tests), only tasks with existing
   * solutions will be submitted as a test tasks.
   */
  public static boolean EXISTING_SOLUTIONS_ONLY = false;

  /** Test the method, returns the sum of all differences between
   * the required and obtained excange amount. One exception counts
   * as 1000 on the error score.
   */
  public int test() {
    int S = 0;
    int e;
    Test:
        for (int amount = 20; amount < 100; amount++) {
      try {
        if (REPORT_ENABLED)
          System.out.println("EXCANGING " + amount + " ");
          // Do not solve cases without solutions
        if (EXISTING_SOLUTIONS_ONLY)
          if (!Force.solve(amount)) {
            continue Test;
          }
        e = makeChangeForAmount(amount);
        if (REPORT_ENABLED) {
          System.out.println(" err " + e);
          System.out.println("---------------");
        }
        S = S + e;
      }
      catch (Exception ex) {
        ex.printStackTrace();
        S += 1000;
      }
    }
    if (REPORT_ENABLED)
      System.out.println("Sum of errors " + S);
    return S;
  }

  /**
   * Main method (however non-static!). A single command-line argument is
   * expected, which is the amount of change to create (in other words, 75
   * would be equal to 75 cents).
   *
   * @param args the command-line arguments.
   */
  public void _main(String[] args) {
    if (args.length != 1) {
      System.out.println("Syntax: MakeChange <amount>");
    }
    else {
      try {
        int amount = Integer.parseInt(args[0]);
        if (amount < 1 || amount > 99) {
          System.out.println(
              "The <amount> argument must be between 1 and 99.");
        }
        else {
          try {
            makeChangeForAmount(amount);
          }
          catch (Exception e) {
            e.printStackTrace();
          }
        }
      }
      catch (NumberFormatException e) {
        System.out.println(
            "The <amount> argument must be a valid integer value");
      }
    }
  }

  /**
   * Find and print the solution, return the solution error.
   * @return absolute difference between the required and computed change
   */
  protected int solve(int a_targetChangeAmount, Configuration conf,
                      SupergeneChangeFitnessFunction fitnessFunction,
                      Gene[] sampleGenes)
      throws InvalidConfigurationException {
    Chromosome sampleChromosome = new Chromosome(sampleGenes);
    conf.setSampleChromosome(sampleChromosome);
    // Finally, we need to tell the Configuration object how many
    // Chromosomes we want in our population. The more Chromosomes,
    // the larger number of potential solutions (which is good for
    // finding the answer), but the longer it will take to evolve
    // the population (which could be seen as bad). We'll just set
    // the population size to 500 here.
    // ------------------------------------------------------------
    conf.setPopulationSize(POPULATION_SIZE);
    // Create random initial population of Chromosomes.
    // ------------------------------------------------
    Genotype population;
    population = Genotype.randomInitialGenotype(conf);
    int s;
    Evolution:
        // Evolve the population, break if the the change solution is found
        // ---------------------------------------------------------------
        for (int i = 0; i < MAX_ALLOWED_EVOLUTIONS; i++) {
      population.evolve();
      s = Math.abs(fitnessFunction.amountOfChange(population.
                                                  getFittestChromosome())
                   - a_targetChangeAmount);
      if (s == 0)break Evolution;
      // System.out.print(s+".");
    }
    // Display the best solution we found.
    // -----------------------------------
    Chromosome bestSolutionSoFar = report(fitnessFunction, population);
    s = Math.abs(fitnessFunction.amountOfChange(bestSolutionSoFar)
                 - a_targetChangeAmount);
    return s;
  }
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -