📄 lpc.c
字号:
/*
**
** File: lpc.c
**
** Description: Functions that implement linear predictive coding
** (LPC) operations.
**
** Functions:
**
** Computing LPC coefficients:
**
** Comp_Lpc()
** Durbin()
**
** Perceptual noise weighting:
**
** Wght_Lpc()
** Error_Wght()
**
** Computing combined impulse response:
**
** Comp_Ir()
**
** Computing ringing response:
**
** Sub_Ring()
** Upd_Ring()
**
** Synthesizing speech:
**
** Synt()
** Spf()
*/
/*
ITU-T G.723 Speech Coder ANSI-C Source Code Version 5.00
copyright (c) 1995, AudioCodes, DSP Group, France Telecom,
Universite de Sherbrooke. All rights reserved.
*/
#include <stdio.h>
#include "typedef.h"
#include "basop.h"
#include "cst_lbc.h"
#include "tab_lbc.h"
#include "lbccodec.h"
#include "coder.h"
#include "decod.h"
#include "util_lbc.h"
#include "lpc.h"
#include "cod_cng.h"
#include "printdata.h"
#include <string.h>
/*
**
** Function: Comp_Lpc()
**
** Description: Computes the tenth-order LPC filters for an
** entire frame. For each subframe, a
** Hamming-windowed block of 180 samples,
** centered around the subframe, is used to
** compute eleven autocorrelation coefficients.
** The Levinson-Durbin algorithm then generates
** the LPC coefficients. This function requires
** a look-ahead of one subframe, and hence
** introduces a 7.5 ms encoding delay.
**
** Links to text: Section 2.4
**
** Arguments:
**
** Word16 *UnqLpc Empty Buffer
** Word16 PrevDat[] Previous 2 subframes of samples (120 words)
** Word16 DataBuff[] Current frame of samples (240 words)
**
** Outputs:
**
** Word16 UnqLpc[] LPC coefficients for entire frame (40 words)
**
** Return value: None
**
*/
void Comp_Lpc( Word16 *UnqLpc, Word16 *PrevDat, Word16 *DataBuff )
{
int i,j,k ;
Word16 Dpnt[Frame+LpcFrame-SubFrLen] ;
Word16 Vect[LpcFrame] ;
Word16 Acf_sf[LpcOrderP1*SubFrames];
Word16 ShAcf_sf[SubFrames];
Word16 Exp ;
Word16 *curAcf;
Word16 Pk2;
Word32 Acc0,Acc1 ;
/*
* Generate a buffer of 360 samples. This consists of 120 samples
* from the previous frame and 240 samples from the current frame.
*/
for ( i = 0 ; i < LpcFrame-SubFrLen ; i ++ )
Dpnt[i] = PrevDat[i] ;
for ( i = 0 ; i < Frame ; i ++ )
Dpnt[i+LpcFrame-SubFrLen] = DataBuff[i] ;
/*
* Repeat for all subframes
*/
curAcf = Acf_sf;
for ( k = 0 ; k < SubFrames ; k ++ ) {
/*
* Do windowing
*/
/* Get block of 180 samples centered around current subframe */
for ( i = 0 ; i < LpcFrame ; i ++ )
Vect[i] = Dpnt[k*SubFrLen+i] ;
/* Normalize */
ShAcf_sf[k] = Vec_Norm( Vect, (Word16) LpcFrame ) ;
//printData(ShAcf_sf,SubFrames,1);
/* Apply the Hamming window */
for ( i = 0 ; i < LpcFrame ; i ++ )
Vect[i] = mult_r(Vect[i], HammingWindowTable[i]) ;
//printData(Vect,LpcFrame,1);
/*
* Compute the autocorrelation coefficients
*/
/* Compute the zeroth-order coefficient (energy) */
Acc1 = (Word32) 0 ;
for ( i = 0 ; i < LpcFrame ; i ++ ) {
Acc0 = L_mult( Vect[i], Vect[i] ) ;
Acc0 = L_shr( Acc0, (Word16) 1 ) ;
Acc1 = L_add( Acc1, Acc0 ) ;
}
/* Apply a white noise correction factor of (1025/1024) */
Acc0 = L_shr( Acc1, (Word16) RidgeFact ) ;
Acc1 = L_add( Acc1, Acc0 ) ;
/* Normalize the energy */
Exp = norm_l( Acc1 ) ;
Acc1 = L_shl( Acc1, Exp ) ;
curAcf[0] = round( Acc1 ) ;
if(curAcf[0] == 0) {
for ( i = 1 ; i <= LpcOrder ; i ++ )
curAcf[i] = 0;
ShAcf_sf[k] = 40;
}
else {
/* Compute the rest of the autocorrelation coefficients.
Multiply them by a binomial coefficients lag window. */
for ( i = 1 ; i <= LpcOrder ; i ++ ) {
Acc1 = (Word32) 0 ;
for ( j = i ; j < LpcFrame ; j ++ ) {
Acc0 = L_mult( Vect[j], Vect[j-i] ) ;
Acc0 = L_shr( Acc0, (Word16) 1 ) ;
Acc1 = L_add( Acc1, Acc0 ) ;
}
Acc0 = L_shl( Acc1, Exp ) ;
Acc0 = L_mls( Acc0, BinomialWindowTable[i-1] ) ;
curAcf[i] = round(Acc0) ;
}
/* Save Acf scaling factor */
ShAcf_sf[k] = add(Exp, shl(ShAcf_sf[k], 1));
}
/*
* Apply the Levinson-Durbin algorithm to generate the LPC
* coefficients
*/
Durbin( &UnqLpc[k*LpcOrder], &curAcf[1], curAcf[0], &Pk2 );
CodStat.SinDet <<= 1;
if ( Pk2 > 0x799a ) {
CodStat.SinDet ++ ;
}
curAcf += LpcOrderP1;
}
/* Update sine detector */
CodStat.SinDet &= 0x7fff ;
j = CodStat.SinDet ;
k = 0 ;
for ( i = 0 ; i < 15 ; i ++ ) {
k += j & 1 ;
j >>= 1 ;
}
if ( k >= 14 )
CodStat.SinDet |= 0x8000 ;
/* Update CNG Acf memories */
Update_Acf(Acf_sf, ShAcf_sf);
}
/*
**
** Function: Durbin()
**
** Description: Implements the Levinson-Durbin algorithm for a
** subframe. The Levinson-Durbin algorithm
** recursively computes the minimum mean-squared
** error (MMSE) linear prediction filter based on the
** estimated autocorrelation coefficients.
**
** Links to text: Section 2.4
**
** Arguments:
**
** Word16 *Lpc Empty buffer
** Word16 Corr[] First- through tenth-order autocorrelations (10 words)
** Word16 Err Zeroth-order autocorrelation, or energy
**
** Outputs:
**
** Word16 Lpc[] LPC coefficients (10 words)
**
** Return value: The error
**
*/
Word16 Durbin( Word16 *Lpc, Word16 *Corr, Word16 Err, Word16 *Pk2 )
{
int i,j ;
Word16 Temp[LpcOrder] ;
Word16 Pk ;
Word32 Acc0,Acc1,Acc2 ;
/*
* Initialize the LPC vector
*/
for ( i = 0 ; i < LpcOrder ; i ++ )
Lpc[i] = (Word16) 0 ;
/*
* Do the recursion. At the ith step, the algorithm computes the
* (i+1)th - order MMSE linear prediction filter.
*/
for ( i = 0 ; i < LpcOrder ; i ++ ) {
/*
* Compute the partial correlation (parcor) coefficient
*/
/* Start parcor computation */
Acc0 = L_deposit_h( Corr[i] ) ;
Acc0 = L_shr( Acc0, (Word16) 2 ) ;
for ( j = 0 ; j < i ; j ++ )
Acc0 = L_msu( Acc0, Lpc[j], Corr[i-j-1] ) ;
Acc0 = L_shl( Acc0, (Word16) 2 ) ;
/* Save sign */
Acc1 = Acc0 ;
Acc0 = L_abs( Acc0 ) ;
/* Finish parcor computation */
Acc2 = L_deposit_h( Err ) ;
if ( Acc0 >= Acc2 ) {
*Pk2 = 32767;
break ;
}
Pk = div_l( Acc0, Err ) ;
if ( Acc1 >= 0 )
Pk = negate(Pk) ;
/*
* Sine detector
*/
if ( i == 1 ) *Pk2 = Pk;
/*
* Compute the ith LPC coefficient
*/
Acc0 = L_deposit_h( negate(Pk) ) ;
Acc0 = L_shr( Acc0, (Word16) 2 ) ;
Lpc[i] = round( Acc0 ) ;
/*
* Update the prediction error
*/
Acc1 = L_mls( Acc1, Pk ) ;
Acc1 = L_add( Acc1, Acc2 ) ;
Err = round( Acc1 ) ;
/*
* Compute the remaining LPC coefficients
*/
for ( j = 0 ; j < i ; j ++ )
Temp[j] = Lpc[j] ;
for ( j = 0 ; j < i ; j ++ ) {
Acc0 = L_deposit_h( Lpc[j] ) ;
Acc0 = L_mac( Acc0, Pk, Temp[i-j-1] ) ;
Lpc[j] = round( Acc0 ) ;
}
}
return Err ;
}
/*
**
** Function: Wght_Lpc()
**
** Description: Computes the formant perceptual weighting
** filter coefficients for a frame. These
** coefficients are geometrically scaled versions
** of the unquantized LPC coefficients.
**
** Links to text: Section 2.8
**
** Arguments:
**
** Word16 *PerLpc Empty Buffer
** Word16 UnqLpc[] Unquantized LPC coefficients (40 words)
**
** Outputs:
**
** Word16 PerLpc[] Perceptual weighting filter coefficients
** (80 words)
**
** Return value: None
**
*/
void Wght_Lpc( Word16 *PerLpc, Word16 *UnqLpc )
{
int i,j ;
/*
* Do for all subframes
*/
for ( i = 0 ; i < SubFrames ; i ++ ) {
/*
* Compute the jth FIR coefficient by multiplying the jth LPC
* coefficient by (0.9)^j.
*/
for ( j = 0 ; j < LpcOrder ; j ++ )
PerLpc[j] = mult_r( UnqLpc[j], PerFiltZeroTable[j] ) ;
PerLpc += LpcOrder ;
/*
* Compute the jth IIR coefficient by multiplying the jth LPC
* coefficient by (0.5)^j.
*/
for ( j = 0 ; j < LpcOrder ; j ++ )
PerLpc[j] = mult_r( UnqLpc[j], PerFiltPoleTable[j] ) ;
PerLpc += LpcOrder ;
UnqLpc += LpcOrder ;
}
}
/*
**
** Function: Error_Wght()
**
** Description: Implements the formant perceptual weighting
** filter for a frame. This filter effectively
** deemphasizes the formant frequencies in the
** error signal.
**
** Links to text: Section 2.8
**
** Arguments:
**
** Word16 Dpnt[] Highpass filtered speech x[n] (240 words)
** Word16 PerLpc[] Filter coefficients (80 words)
**
** Inputs:
**
** CodStat.WghtFirDl[] FIR filter memory from previous frame (10 words)
** CodStat.WghtIirDl[] IIR filter memory from previous frame (10 words)
**
** Outputs:
**
** Word16 Dpnt[] Weighted speech f[n] (240 words)
**
** Return value: None
**
*/
void Error_Wght( Word16 *Dpnt, Word16 *PerLpc )
{
int i,j,k ;
int temp ;//仅为提高代码效率,无实际意义.
Word32 Acc0 ;
/*
* Do for all subframes
*/
for ( k = 0 ; k < SubFrames ; k ++ ) {
for ( i = 0 ; i < SubFrLen ; i ++ ) {
temp=SubFrLen-i;
/*
* Do the FIR part
*/
/* Filter */
Acc0 = L_mult( *Dpnt, (Word16) 0x2000 ) ;
for ( j = 0 ; j < LpcOrder ; j ++ )
//Acc0 = L_msu( Acc0, PerLpc[j], CodStat.WghtFirDl[j] ) ;
Acc0 = L_msu( Acc0, PerLpc[j], CodStat.WghtFirDl[temp+j] ) ;
/* Update memory */
/*
for ( j = LpcOrder-1 ; j > 0 ; j -- )
CodStat.WghtFirDl[j] = CodStat.WghtFirDl[j-1] ;
*/
//CodStat.WghtFirDl[0] = *Dpnt ;
CodStat.WghtFirDl[temp-1] = *Dpnt ;
/*
* Do the IIR part
*/
/* Filter */
for ( j = 0 ; j < LpcOrder ; j ++ )
//Acc0 = L_mac( Acc0, PerLpc[LpcOrder+j],
// CodStat.WghtIirDl[j] ) ;
Acc0 = L_mac( Acc0, PerLpc[LpcOrder+j],
CodStat.WghtIirDl[temp+j] ) ;
/* Update memory */
/*
for ( j = LpcOrder-1 ; j > 0 ; j -- )
CodStat.WghtIirDl[j] = CodStat.WghtIirDl[j-1] ;
*/
Acc0 = L_shl( Acc0, (Word16) 2 ) ;
/* Update memory */
//CodStat.WghtIirDl[0] = round( Acc0 ) ;
//*Dpnt ++ = CodStat.WghtIirDl[0] ;
CodStat.WghtIirDl[temp-1] = round( Acc0 ) ;
*Dpnt ++ = CodStat.WghtIirDl[temp-1] ;
}
PerLpc += 2*LpcOrder ;
}
}
/*
**
** Function: Comp_Ir()
**
** Description: Computes the combined impulse response of the
** formant perceptual weighting filter, harmonic
** noise shaping filter, and synthesis filter for
** a subframe.
**
** Links to text: Section 2.12
**
** Arguments:
**
** Word16 *ImpResp Empty Buffer
** Word16 QntLpc[] Quantized LPC coefficients (10 words)
** Word16 PerLpc[] Perceptual filter coefficients (20 words)
** PWDEF Pw Harmonic noise shaping filter parameters
**
** Outputs:
**
** Word16 ImpResp[] Combined impulse response (60 words)
**
** Return value: None
**
*/
void Comp_Ir( Word16 *ImpResp, Word16 *QntLpc, Word16 *PerLpc, PWDEF Pw )
{
int i,j ;
Word16 FirDl[LpcOrder] ;
Word16 IirDl[LpcOrder] ;
Word16 Temp[PitchMax+SubFrLen] ;
Word32 Acc0,Acc1 ;
/*
* Clear all memory. Impulse response calculation requires
* an all-zero initial state.
*/
/* Perceptual weighting filter */
for ( i = 0 ; i < LpcOrder ; i ++ )
FirDl[i] = IirDl[i] = (Word16) 0 ;
/* Harmonic noise shaping filter */
for ( i = 0 ; i < PitchMax+SubFrLen ; i ++ )
Temp[i] = (Word16) 0 ;
/*
* Input a single impulse
*/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -