📄 sshbn.c
字号:
/*
* Decrement a number.
*/
void decbn(Bignum bn)
{
int i = 1;
while (i < bn[0] && bn[i] == 0)
bn[i++] = BIGNUM_INT_MASK;
bn[i]--;
}
Bignum bignum_from_bytes(const unsigned char *data, int nbytes)
{
Bignum result;
int w, i;
w = (nbytes + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES; /* bytes->words */
result = newbn(w);
for (i = 1; i <= w; i++)
result[i] = 0;
for (i = nbytes; i--;) {
unsigned char byte = *data++;
result[1 + i / BIGNUM_INT_BYTES] |= byte << (8*i % BIGNUM_INT_BITS);
}
while (result[0] > 1 && result[result[0]] == 0)
result[0]--;
return result;
}
/*
* Read an ssh1-format bignum from a data buffer. Return the number
* of bytes consumed, or -1 if there wasn't enough data.
*/
int ssh1_read_bignum(const unsigned char *data, int len, Bignum * result)
{
const unsigned char *p = data;
int i;
int w, b;
if (len < 2)
return -1;
w = 0;
for (i = 0; i < 2; i++)
w = (w << 8) + *p++;
b = (w + 7) / 8; /* bits -> bytes */
if (len < b+2)
return -1;
if (!result) /* just return length */
return b + 2;
*result = bignum_from_bytes(p, b);
return p + b - data;
}
/*
* Return the bit count of a bignum, for ssh1 encoding.
*/
int bignum_bitcount(Bignum bn)
{
int bitcount = bn[0] * BIGNUM_INT_BITS - 1;
while (bitcount >= 0
&& (bn[bitcount / BIGNUM_INT_BITS + 1] >> (bitcount % BIGNUM_INT_BITS)) == 0) bitcount--;
return bitcount + 1;
}
/*
* Return the byte length of a bignum when ssh1 encoded.
*/
int ssh1_bignum_length(Bignum bn)
{
return 2 + (bignum_bitcount(bn) + 7) / 8;
}
/*
* Return the byte length of a bignum when ssh2 encoded.
*/
int ssh2_bignum_length(Bignum bn)
{
return 4 + (bignum_bitcount(bn) + 8) / 8;
}
/*
* Return a byte from a bignum; 0 is least significant, etc.
*/
int bignum_byte(Bignum bn, int i)
{
if (i >= BIGNUM_INT_BYTES * bn[0])
return 0; /* beyond the end */
else
return (bn[i / BIGNUM_INT_BYTES + 1] >>
((i % BIGNUM_INT_BYTES)*8)) & 0xFF;
}
/*
* Return a bit from a bignum; 0 is least significant, etc.
*/
int bignum_bit(Bignum bn, int i)
{
if (i >= BIGNUM_INT_BITS * bn[0])
return 0; /* beyond the end */
else
return (bn[i / BIGNUM_INT_BITS + 1] >> (i % BIGNUM_INT_BITS)) & 1;
}
/*
* Set a bit in a bignum; 0 is least significant, etc.
*/
void bignum_set_bit(Bignum bn, int bitnum, int value)
{
if (bitnum >= BIGNUM_INT_BITS * bn[0])
abort(); /* beyond the end */
else {
int v = bitnum / BIGNUM_INT_BITS + 1;
int mask = 1 << (bitnum % BIGNUM_INT_BITS);
if (value)
bn[v] |= mask;
else
bn[v] &= ~mask;
}
}
/*
* Write a ssh1-format bignum into a buffer. It is assumed the
* buffer is big enough. Returns the number of bytes used.
*/
int ssh1_write_bignum(void *data, Bignum bn)
{
unsigned char *p = data;
int len = ssh1_bignum_length(bn);
int i;
int bitc = bignum_bitcount(bn);
*p++ = (bitc >> 8) & 0xFF;
*p++ = (bitc) & 0xFF;
for (i = len - 2; i--;)
*p++ = bignum_byte(bn, i);
return len;
}
/*
* Compare two bignums. Returns like strcmp.
*/
int bignum_cmp(Bignum a, Bignum b)
{
int amax = a[0], bmax = b[0];
int i = (amax > bmax ? amax : bmax);
while (i) {
BignumInt aval = (i > amax ? 0 : a[i]);
BignumInt bval = (i > bmax ? 0 : b[i]);
if (aval < bval)
return -1;
if (aval > bval)
return +1;
i--;
}
return 0;
}
/*
* Right-shift one bignum to form another.
*/
Bignum bignum_rshift(Bignum a, int shift)
{
Bignum ret;
int i, shiftw, shiftb, shiftbb, bits;
BignumInt ai, ai1;
bits = bignum_bitcount(a) - shift;
ret = newbn((bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);
if (ret) {
shiftw = shift / BIGNUM_INT_BITS;
shiftb = shift % BIGNUM_INT_BITS;
shiftbb = BIGNUM_INT_BITS - shiftb;
ai1 = a[shiftw + 1];
for (i = 1; i <= ret[0]; i++) {
ai = ai1;
ai1 = (i + shiftw + 1 <= a[0] ? a[i + shiftw + 1] : 0);
ret[i] = ((ai >> shiftb) | (ai1 << shiftbb)) & BIGNUM_INT_MASK;
}
}
return ret;
}
/*
* Non-modular multiplication and addition.
*/
Bignum bigmuladd(Bignum a, Bignum b, Bignum addend)
{
int alen = a[0], blen = b[0];
int mlen = (alen > blen ? alen : blen);
int rlen, i, maxspot;
BignumInt *workspace;
Bignum ret;
/* mlen space for a, mlen space for b, 2*mlen for result */
workspace = snewn(mlen * 4, BignumInt);
for (i = 0; i < mlen; i++) {
workspace[0 * mlen + i] = (mlen - i <= a[0] ? a[mlen - i] : 0);
workspace[1 * mlen + i] = (mlen - i <= b[0] ? b[mlen - i] : 0);
}
internal_mul(workspace + 0 * mlen, workspace + 1 * mlen,
workspace + 2 * mlen, mlen);
/* now just copy the result back */
rlen = alen + blen + 1;
if (addend && rlen <= addend[0])
rlen = addend[0] + 1;
ret = newbn(rlen);
maxspot = 0;
for (i = 1; i <= ret[0]; i++) {
ret[i] = (i <= 2 * mlen ? workspace[4 * mlen - i] : 0);
if (ret[i] != 0)
maxspot = i;
}
ret[0] = maxspot;
/* now add in the addend, if any */
if (addend) {
BignumDblInt carry = 0;
for (i = 1; i <= rlen; i++) {
carry += (i <= ret[0] ? ret[i] : 0);
carry += (i <= addend[0] ? addend[i] : 0);
ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
carry >>= BIGNUM_INT_BITS;
if (ret[i] != 0 && i > maxspot)
maxspot = i;
}
}
ret[0] = maxspot;
sfree(workspace);
return ret;
}
/*
* Non-modular multiplication.
*/
Bignum bigmul(Bignum a, Bignum b)
{
return bigmuladd(a, b, NULL);
}
/*
* Create a bignum which is the bitmask covering another one. That
* is, the smallest integer which is >= N and is also one less than
* a power of two.
*/
Bignum bignum_bitmask(Bignum n)
{
Bignum ret = copybn(n);
int i;
BignumInt j;
i = ret[0];
while (n[i] == 0 && i > 0)
i--;
if (i <= 0)
return ret; /* input was zero */
j = 1;
while (j < n[i])
j = 2 * j + 1;
ret[i] = j;
while (--i > 0)
ret[i] = BIGNUM_INT_MASK;
return ret;
}
/*
* Convert a (max 32-bit) long into a bignum.
*/
Bignum bignum_from_long(unsigned long nn)
{
Bignum ret;
BignumDblInt n = nn;
ret = newbn(3);
ret[1] = (BignumInt)(n & BIGNUM_INT_MASK);
ret[2] = (BignumInt)((n >> BIGNUM_INT_BITS) & BIGNUM_INT_MASK);
ret[3] = 0;
ret[0] = (ret[2] ? 2 : 1);
return ret;
}
/*
* Add a long to a bignum.
*/
Bignum bignum_add_long(Bignum number, unsigned long addendx)
{
Bignum ret = newbn(number[0] + 1);
int i, maxspot = 0;
BignumDblInt carry = 0, addend = addendx;
for (i = 1; i <= ret[0]; i++) {
carry += addend & BIGNUM_INT_MASK;
carry += (i <= number[0] ? number[i] : 0);
addend >>= BIGNUM_INT_BITS;
ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
carry >>= BIGNUM_INT_BITS;
if (ret[i] != 0)
maxspot = i;
}
ret[0] = maxspot;
return ret;
}
/*
* Compute the residue of a bignum, modulo a (max 16-bit) short.
*/
unsigned short bignum_mod_short(Bignum number, unsigned short modulus)
{
BignumDblInt mod, r;
int i;
r = 0;
mod = modulus;
for (i = number[0]; i > 0; i--)
r = (r * (BIGNUM_TOP_BIT % mod) * 2 + number[i] % mod) % mod;
return (unsigned short) r;
}
#ifdef DEBUG
void diagbn(char *prefix, Bignum md)
{
int i, nibbles, morenibbles;
static const char hex[] = "0123456789ABCDEF";
debug(("%s0x", prefix ? prefix : ""));
nibbles = (3 + bignum_bitcount(md)) / 4;
if (nibbles < 1)
nibbles = 1;
morenibbles = 4 * md[0] - nibbles;
for (i = 0; i < morenibbles; i++)
debug(("-"));
for (i = nibbles; i--;)
debug(("%c",
hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF]));
if (prefix)
debug(("\n"));
}
#endif
/*
* Simple division.
*/
Bignum bigdiv(Bignum a, Bignum b)
{
Bignum q = newbn(a[0]);
bigdivmod(a, b, NULL, q);
return q;
}
/*
* Simple remainder.
*/
Bignum bigmod(Bignum a, Bignum b)
{
Bignum r = newbn(b[0]);
bigdivmod(a, b, r, NULL);
return r;
}
/*
* Greatest common divisor.
*/
Bignum biggcd(Bignum av, Bignum bv)
{
Bignum a = copybn(av);
Bignum b = copybn(bv);
while (bignum_cmp(b, Zero) != 0) {
Bignum t = newbn(b[0]);
bigdivmod(a, b, t, NULL);
while (t[0] > 1 && t[t[0]] == 0)
t[0]--;
freebn(a);
a = b;
b = t;
}
freebn(b);
return a;
}
/*
* Modular inverse, using Euclid's extended algorithm.
*/
Bignum modinv(Bignum number, Bignum modulus)
{
Bignum a = copybn(modulus);
Bignum b = copybn(number);
Bignum xp = copybn(Zero);
Bignum x = copybn(One);
int sign = +1;
while (bignum_cmp(b, One) != 0) {
Bignum t = newbn(b[0]);
Bignum q = newbn(a[0]);
bigdivmod(a, b, t, q);
while (t[0] > 1 && t[t[0]] == 0)
t[0]--;
freebn(a);
a = b;
b = t;
t = xp;
xp = x;
x = bigmuladd(q, xp, t);
sign = -sign;
freebn(t);
freebn(q);
}
freebn(b);
freebn(a);
freebn(xp);
/* now we know that sign * x == 1, and that x < modulus */
if (sign < 0) {
/* set a new x to be modulus - x */
Bignum newx = newbn(modulus[0]);
BignumInt carry = 0;
int maxspot = 1;
int i;
for (i = 1; i <= newx[0]; i++) {
BignumInt aword = (i <= modulus[0] ? modulus[i] : 0);
BignumInt bword = (i <= x[0] ? x[i] : 0);
newx[i] = aword - bword - carry;
bword = ~bword;
carry = carry ? (newx[i] >= bword) : (newx[i] > bword);
if (newx[i] != 0)
maxspot = i;
}
newx[0] = maxspot;
freebn(x);
x = newx;
}
/* and return. */
return x;
}
/*
* Render a bignum into decimal. Return a malloced string holding
* the decimal representation.
*/
char *bignum_decimal(Bignum x)
{
int ndigits, ndigit;
int i, iszero;
BignumDblInt carry;
char *ret;
BignumInt *workspace;
/*
* First, estimate the number of digits. Since log(10)/log(2)
* is just greater than 93/28 (the joys of continued fraction
* approximations...) we know that for every 93 bits, we need
* at most 28 digits. This will tell us how much to malloc.
*
* Formally: if x has i bits, that means x is strictly less
* than 2^i. Since 2 is less than 10^(28/93), this is less than
* 10^(28i/93). We need an integer power of ten, so we must
* round up (rounding down might make it less than x again).
* Therefore if we multiply the bit count by 28/93, rounding
* up, we will have enough digits.
*/
i = bignum_bitcount(x);
ndigits = (28 * i + 92) / 93; /* multiply by 28/93 and round up */
ndigits++; /* allow for trailing \0 */
ret = snewn(ndigits, char);
/*
* Now allocate some workspace to hold the binary form as we
* repeatedly divide it by ten. Initialise this to the
* big-endian form of the number.
*/
workspace = snewn(x[0], BignumInt);
for (i = 0; i < x[0]; i++)
workspace[i] = x[x[0] - i];
/*
* Next, write the decimal number starting with the last digit.
* We use ordinary short division, dividing 10 into the
* workspace.
*/
ndigit = ndigits - 1;
ret[ndigit] = '\0';
do {
iszero = 1;
carry = 0;
for (i = 0; i < x[0]; i++) {
carry = (carry << BIGNUM_INT_BITS) + workspace[i];
workspace[i] = (BignumInt) (carry / 10);
if (workspace[i])
iszero = 0;
carry %= 10;
}
ret[--ndigit] = (char) (carry + '0');
} while (!iszero);
/*
* There's a chance we've fallen short of the start of the
* string. Correct if so.
*/
if (ndigit > 0)
memmove(ret, ret + ndigit, ndigits - ndigit);
/*
* Done.
*/
sfree(workspace);
return ret;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -