⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sshdss.c

📁 一个支持FTP,SFTP的客户端程序
💻 C
📖 第 1 页 / 共 2 页
字号:
    PUT_32BIT(p, 7);
    p += 4;
    memcpy(p, "ssh-dss", 7);
    p += 7;
    PUT_32BIT(p, plen);
    p += 4;
    for (i = plen; i--;)
	*p++ = bignum_byte(dss->p, i);
    PUT_32BIT(p, qlen);
    p += 4;
    for (i = qlen; i--;)
	*p++ = bignum_byte(dss->q, i);
    PUT_32BIT(p, glen);
    p += 4;
    for (i = glen; i--;)
	*p++ = bignum_byte(dss->g, i);
    PUT_32BIT(p, ylen);
    p += 4;
    for (i = ylen; i--;)
	*p++ = bignum_byte(dss->y, i);
    assert(p == blob + bloblen);
    *len = bloblen;
    return blob;
}

static unsigned char *dss_private_blob(void *key, int *len)
{
    struct dss_key *dss = (struct dss_key *) key;
    int xlen, bloblen;
    int i;
    unsigned char *blob, *p;

    xlen = (bignum_bitcount(dss->x) + 8) / 8;

    /*
     * mpint x, string[20] the SHA of p||q||g. Total 4 + xlen.
     */
    bloblen = 4 + xlen;
    blob = snewn(bloblen, unsigned char);
    p = blob;
    PUT_32BIT(p, xlen);
    p += 4;
    for (i = xlen; i--;)
	*p++ = bignum_byte(dss->x, i);
    assert(p == blob + bloblen);
    *len = bloblen;
    return blob;
}

static void *dss_createkey(unsigned char *pub_blob, int pub_len,
			   unsigned char *priv_blob, int priv_len)
{
    struct dss_key *dss;
    char *pb = (char *) priv_blob;
    char *hash;
    int hashlen;
    SHA_State s;
    unsigned char digest[20];
    Bignum ytest;

    dss = dss_newkey((char *) pub_blob, pub_len);
    dss->x = getmp(&pb, &priv_len);

    /*
     * Check the obsolete hash in the old DSS key format.
     */
    hashlen = -1;
    getstring(&pb, &priv_len, &hash, &hashlen);
    if (hashlen == 20) {
	SHA_Init(&s);
	sha_mpint(&s, dss->p);
	sha_mpint(&s, dss->q);
	sha_mpint(&s, dss->g);
	SHA_Final(&s, digest);
	if (0 != memcmp(hash, digest, 20)) {
	    dss_freekey(dss);
	    return NULL;
	}
    }

    /*
     * Now ensure g^x mod p really is y.
     */
    ytest = modpow(dss->g, dss->x, dss->p);
    if (0 != bignum_cmp(ytest, dss->y)) {
	dss_freekey(dss);
	return NULL;
    }
    freebn(ytest);

    return dss;
}

static void *dss_openssh_createkey(unsigned char **blob, int *len)
{
    char **b = (char **) blob;
    struct dss_key *dss;

    dss = snew(struct dss_key);
    if (!dss)
	return NULL;

    dss->p = getmp(b, len);
    dss->q = getmp(b, len);
    dss->g = getmp(b, len);
    dss->y = getmp(b, len);
    dss->x = getmp(b, len);

    if (!dss->p || !dss->q || !dss->g || !dss->y || !dss->x) {
	sfree(dss->p);
	sfree(dss->q);
	sfree(dss->g);
	sfree(dss->y);
	sfree(dss->x);
	sfree(dss);
	return NULL;
    }

    return dss;
}

static int dss_openssh_fmtkey(void *key, unsigned char *blob, int len)
{
    struct dss_key *dss = (struct dss_key *) key;
    int bloblen, i;

    bloblen =
	ssh2_bignum_length(dss->p) +
	ssh2_bignum_length(dss->q) +
	ssh2_bignum_length(dss->g) +
	ssh2_bignum_length(dss->y) +
	ssh2_bignum_length(dss->x);

    if (bloblen > len)
	return bloblen;

    bloblen = 0;
#define ENC(x) \
    PUT_32BIT(blob+bloblen, ssh2_bignum_length((x))-4); bloblen += 4; \
    for (i = ssh2_bignum_length((x))-4; i-- ;) blob[bloblen++]=bignum_byte((x),i);
    ENC(dss->p);
    ENC(dss->q);
    ENC(dss->g);
    ENC(dss->y);
    ENC(dss->x);

    return bloblen;
}

static int dss_pubkey_bits(void *blob, int len)
{
    struct dss_key *dss;
    int ret;

    dss = dss_newkey((char *) blob, len);
    ret = bignum_bitcount(dss->p);
    dss_freekey(dss);

    return ret;
}

static unsigned char *dss_sign(void *key, char *data, int datalen, int *siglen)
{
    /*
     * The basic DSS signing algorithm is:
     * 
     *  - invent a random k between 1 and q-1 (exclusive).
     *  - Compute r = (g^k mod p) mod q.
     *  - Compute s = k^-1 * (hash + x*r) mod q.
     * 
     * This has the dangerous properties that:
     * 
     *  - if an attacker in possession of the public key _and_ the
     *    signature (for example, the host you just authenticated
     *    to) can guess your k, he can reverse the computation of s
     *    and work out x = r^-1 * (s*k - hash) mod q. That is, he
     *    can deduce the private half of your key, and masquerade
     *    as you for as long as the key is still valid.
     * 
     *  - since r is a function purely of k and the public key, if
     *    the attacker only has a _range of possibilities_ for k
     *    it's easy for him to work through them all and check each
     *    one against r; he'll never be unsure of whether he's got
     *    the right one.
     * 
     *  - if you ever sign two different hashes with the same k, it
     *    will be immediately obvious because the two signatures
     *    will have the same r, and moreover an attacker in
     *    possession of both signatures (and the public key of
     *    course) can compute k = (hash1-hash2) * (s1-s2)^-1 mod q,
     *    and from there deduce x as before.
     * 
     *  - the Bleichenbacher attack on DSA makes use of methods of
     *    generating k which are significantly non-uniformly
     *    distributed; in particular, generating a 160-bit random
     *    number and reducing it mod q is right out.
     * 
     * For this reason we must be pretty careful about how we
     * generate our k. Since this code runs on Windows, with no
     * particularly good system entropy sources, we can't trust our
     * RNG itself to produce properly unpredictable data. Hence, we
     * use a totally different scheme instead.
     * 
     * What we do is to take a SHA-512 (_big_) hash of the private
     * key x, and then feed this into another SHA-512 hash that
     * also includes the message hash being signed. That is:
     * 
     *   proto_k = SHA512 ( SHA512(x) || SHA160(message) )
     * 
     * This number is 512 bits long, so reducing it mod q won't be
     * noticeably non-uniform. So
     * 
     *   k = proto_k mod q
     * 
     * This has the interesting property that it's _deterministic_:
     * signing the same hash twice with the same key yields the
     * same signature.
     * 
     * Despite this determinism, it's still not predictable to an
     * attacker, because in order to repeat the SHA-512
     * construction that created it, the attacker would have to
     * know the private key value x - and by assumption he doesn't,
     * because if he knew that he wouldn't be attacking k!
     *
     * (This trick doesn't, _per se_, protect against reuse of k.
     * Reuse of k is left to chance; all it does is prevent
     * _excessively high_ chances of reuse of k due to entropy
     * problems.)
     * 
     * Thanks to Colin Plumb for the general idea of using x to
     * ensure k is hard to guess, and to the Cambridge University
     * Computer Security Group for helping to argue out all the
     * fine details.
     */
    struct dss_key *dss = (struct dss_key *) key;
    SHA512_State ss;
    unsigned char digest[20], digest512[64];
    Bignum proto_k, k, gkp, hash, kinv, hxr, r, s;
    unsigned char *bytes;
    int nbytes, i;

    SHA_Simple(data, datalen, digest);

    /*
     * Hash some identifying text plus x.
     */
    SHA512_Init(&ss);
    SHA512_Bytes(&ss, "DSA deterministic k generator", 30);
    sha512_mpint(&ss, dss->x);
    SHA512_Final(&ss, digest512);

    /*
     * Now hash that digest plus the message hash.
     */
    SHA512_Init(&ss);
    SHA512_Bytes(&ss, digest512, sizeof(digest512));
    SHA512_Bytes(&ss, digest, sizeof(digest));
    SHA512_Final(&ss, digest512);

    memset(&ss, 0, sizeof(ss));

    /*
     * Now convert the result into a bignum, and reduce it mod q.
     */
    proto_k = bignum_from_bytes(digest512, 64);
    k = bigmod(proto_k, dss->q);
    freebn(proto_k);

    memset(digest512, 0, sizeof(digest512));

    /*
     * Now we have k, so just go ahead and compute the signature.
     */
    gkp = modpow(dss->g, k, dss->p);   /* g^k mod p */
    r = bigmod(gkp, dss->q);	       /* r = (g^k mod p) mod q */
    freebn(gkp);

    hash = bignum_from_bytes(digest, 20);
    kinv = modinv(k, dss->q);	       /* k^-1 mod q */
    hxr = bigmuladd(dss->x, r, hash);  /* hash + x*r */
    s = modmul(kinv, hxr, dss->q);     /* s = k^-1 * (hash + x*r) mod q */
    freebn(hxr);
    freebn(kinv);
    freebn(hash);

    /*
     * Signature blob is
     * 
     *   string  "ssh-dss"
     *   string  two 20-byte numbers r and s, end to end
     * 
     * i.e. 4+7 + 4+40 bytes.
     */
    nbytes = 4 + 7 + 4 + 40;
    bytes = snewn(nbytes, unsigned char);
    PUT_32BIT(bytes, 7);
    memcpy(bytes + 4, "ssh-dss", 7);
    PUT_32BIT(bytes + 4 + 7, 40);
    for (i = 0; i < 20; i++) {
	bytes[4 + 7 + 4 + i] = bignum_byte(r, 19 - i);
	bytes[4 + 7 + 4 + 20 + i] = bignum_byte(s, 19 - i);
    }
    freebn(r);
    freebn(s);

    *siglen = nbytes;
    return bytes;
}

const struct ssh_signkey ssh_dss = {
    dss_newkey,
    dss_freekey,
    dss_fmtkey,
    dss_public_blob,
    dss_private_blob,
    dss_createkey,
    dss_openssh_createkey,
    dss_openssh_fmtkey,
    dss_pubkey_bits,
    dss_fingerprint,
    dss_verifysig,
    dss_sign,
    "ssh-dss",
    "dss"
};

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -