⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 icadtu toolbox.htm

📁 一个neural network的matlab源程序代码
💻 HTM
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- saved from url=(0045)http://mole.imm.dtu.dk/toolbox/ica/index.html -->
<HTML><HEAD><TITLE>ICA:DTU Toolbox</TITLE>
<META content="text/html; charset=iso-8859-1" http-equiv=Content-Type><LINK 
href="ICADTU Toolbox.files/stylesheet.css" rel=stylesheet>
<META content="MSHTML 5.00.3502.5390" name=GENERATOR></HEAD>
<BODY aLink=#d79800 bgColor=#ffffff link=#000000 text=#000000 vLink=#000000>
<DIV align=center>
<TABLE border=0 cellPadding=0 cellSpacing=0 width=640>
  <TBODY>
  <TR>
    <TD><IMG border=1 height=69 src="ICADTU Toolbox.files/iheader.jpg" 
      width=640></TD></TR>
  <TR>
    <TD>
      <P>The ICA:DTU Toolbox holds a collection of Independent Component 
      Analysis (ICA) algorithms implemented for Matlab&#8482;. All code can be used 
      freely in research and other non-profit applications. If you publish 
      results obtained with the ICA:DTU Toolbox we kindly ask that our and other 
      relevant sources are properly cited. Description, cititation and 
      implementation notes for the individual algorithms, are provided with each 
      ICA algorithm.</P>
      <P align=center>- <A 
      href="http://www.imm.dtu.dk/pubdb/personal/showbasket.php?cmd=full_view&amp;id=70&amp;title=ICA%20Publications&amp;header=&amp;footer=&amp;css=http://mole.imm.dtu.dk/toolbox/stylesheet_pub.css&amp;b=1&amp;e=1&amp;year=&amp;fmt=html&amp;order=year">See 
      relevant ICA publications by the ISP Group at IMM, DTU</A><BR>- <A 
      href="http://mole.imm.dtu.dk/toolbox/mail/maillist.php">For news and 
      updates subscribe to DTU:Toolbox mailing list</A></P>
      <P>This toolbox has been developed for the <A 
      href="http://www-sop.inria.fr/epidaure/Collaborations/MAPAWAMO/mapawamo.html" 
      target=_blank>European Union MAPAWAMO project</A>.</P>
      <P><B>Algorithms:</B></P>
      <UL>
        <LI><A 
        href="http://mole.imm.dtu.dk/toolbox/ica/index.html#icaML">icaML</A>: Is 
        an iterative fast and robust algorithm, also known as Infomax. 
        <LI><A 
        href="http://mole.imm.dtu.dk/toolbox/ica/index.html#icaMF">icaMF</A>: Is 
        an iterative algorithm, that offers a variety of possible source priors 
        and mixing matrix constraints, e.g. positivity. It can also handle over 
        and under-complete mixing. 
        <LI><A 
        href="http://mole.imm.dtu.dk/toolbox/ica/index.html#icaMS">icaMS</A>: Is 
        a "one shot" fast algorithm that requires time correlation between 
        samples. </LI></UL>
      <P><B><BR>Common algorithm properties</B></P>
      <UL>
        <LI>No parameters need to be set by default. 
        <LI>Log likelihoods are calculated. 
        <LI>Estimating number of components using Bayes Information Criterion. 
        </LI></UL>
      <P><BR><B>Demonstrators:</B><BR></P>
      <UL>
        <LI><A 
        href="http://mole.imm.dtu.dk/toolbox/ica/index.html#ICAdemofMRI">fMRI</A>: 
        on human and monkey subjects where PCA, icaML, icaMS, icaMF and icaMF 
        (positive sources) are used. 
        <LI><A 
        href="http://mole.imm.dtu.dk/toolbox/ica/index.html#ICAdemoText">Text</A>: 
        classification of medical abstracts (MED dataset) using icaML. </LI></UL>
      <P>&nbsp;</P>
      <P><IMG border=1 height=3 src="ICADTU Toolbox.files/bevel2.jpg" 
      width=640></P>
      <H1>Algorithms</H1>
      <TABLE bgColor=#ffffff border=0 cellPadding=5 cellSpacing=0 
      class=algorithm width=640>
        <TBODY>
        <TR>
          <TD rowSpan=3 width=4>&nbsp;</TD>
          <TD colSpan=2>
            <H2><A name=icaML></A>Maximum likelihood (Infomax) - 
icaML</H2></TD></TR>
        <TR>
          <TD colSpan=2 vAlign=top>
            <P>The algorithm is equivalent to Infomax by Bell and Sejnowski 1995 
            [1] using a maximum likelihood formulation. No noise is assumed and 
            the number of observations must equal the number of sources. The 
            BFGS method [2] is used for optimization. </P>
            <P>The number of independent components are calculated using Bayes 
            Information Criterion [3] (BIC), with PCA for dimension 
            reduction.</P>
            <P>Properties:</P>
            <UL>
              <LI>Linear and instantaneous mixing. 
              <LI>Square mixing matrix. 
              <LI>No noise. </LI></UL>
            <P>Update history:</P>
            <UL>
              <LI>020103 Version 1.4 Included pre-processing with SVD to reduce 
              input dimension. Added optimisation parameter setting and removed 
              log likelihood problem with icaML output </LI></UL></TD></TR>
        <TR>
          <TD width=344>
            <P>[<A 
            href="http://mole.imm.dtu.dk/toolbox/ica/ml/bibtex.bib.txt">Citations</A>][<SPAN 
            class=algorithm>Code <A 
            href="http://mole.imm.dtu.dk/toolbox/ica/ML/icaML.tar.gz">GZ</A> <A 
            href="http://mole.imm.dtu.dk/toolbox/ica/ml/icaML.zip">ZIP</A></SPAN>]</P></TD>
          <TD width=262>
            <P align=right>[Version 1.4 ]</P></TD></TR></TBODY></TABLE>
      <P>&nbsp;</P>
      <TABLE bgColor=#ffffff border=0 cellPadding=5 cellSpacing=0 
      class=algorithm width=640>
        <TBODY>
        <TR>
          <TD rowSpan=3 width=2>&nbsp;</TD>
          <TD colSpan=2>
            <H2><A name=icaMF></A>Mean Field - icaMF</H2></TD></TR>
        <TR>
          <TD colSpan=2>
            <P>This is a Bayesian ICA algorithm for the linear instantaneous 
            mixing model with additive Gaussian noise [1]. The inference problem 
            is solved by ML-II, i.e. the sources are found by integration over 
            the source posterior and the noise covariance and mixing matrix are 
            found by maximization of the marginal likelihood [1]. The sufficient 
            statistics are estimated by either variational mean field theory 
            with the linear response correction or by adaptive TAP mean field 
            theory [2,3]. The mean field equations are solved by a belief 
            propagation method [4] or sequential iteration. The computational 
            complexity is N M^3, where N is the number of time samples and M the 
            number of sources. </P>
            <P>Properties:</P>
            <UL>
              <LI>Linear and instantaneous mixing. 
              <LI>Any type of mixing matrix (quadratic, over- and 
              under-complete). 
              <LI>Mixing matrix - free/positivity constraint estimation and 
              constant for test sets. 
              <LI>Noise covariance - isotropic/diagonal/full noise covariance 
              and constant for test sets. 
              <LI>Variety of source distributions: exponential for positive 
              sources, binary (both +1/-1 and 0/1), Gauss (for probabilistic PCA 
              and factor analysis), bi-Gauss (for negative kurtosis sources) and 
              Laplace and heavy tailed (for positive kurtosis sources). </LI></UL>
            <P>Update history:</P>
            <UL>
              <LI>021002 Version 2.0 
              <LI>021011 Version 2.1 Bug in par.solver='beliefprop2' corrected, 
              new par.method='constant'. 
              <LI>021014 Version 2.1 Bug in prior.S='bigauss' corrected. 
          </LI></UL></TD></TR>
        <TR>
          <TD width=352>
            <P>[<A 
            href="http://mole.imm.dtu.dk/toolbox/ica/mf/bibtex.bib.txt">Citations</A>][<SPAN 
            class=algorithm>Code <A 
            href="http://mole.imm.dtu.dk/toolbox/ica/mf/icaMF.tar.gz">GZ</A> <A 
            href="http://mole.imm.dtu.dk/toolbox/ica/mf/icaMF.zip">ZIP</A></SPAN>]</P></TD>
          <TD width=256>
            <P align=right>[Version 2.1 ]</P></TD></TR></TBODY></TABLE>
      <P>&nbsp;</P>
      <TABLE bgColor=#ffffff border=0 cellPadding=5 cellSpacing=0 
      class=algorithm width=640>
        <TBODY>
        <TR>
          <TD rowSpan=3 width=1>&nbsp;</TD>
          <TD colSpan=2>
            <H2><A name=icaMS></A>Molgedey and Schouster - icaMS</H2></TD></TR>
        <TR>
          <TD colSpan=2>
            <P>The Molgedey and Schuster decorrelation algorithm, having square 
            mixing matrix and no noise [1]. Truncation is used for the time 
            shifted matrix, and it is forced to be symmetric [2]. The delay Tau 
            is estimated [3].</P>
            <P>The number of independent components are calculated using Bayes 
            Information Criterion [4] (BIC), with PCA for dimension 
            reduction.</P>
            <P></P>
            <P>Properties:</P>
            <UL>
              <LI>Linear and instantaneous mixing . 
              <LI>Square mixing matrix. 
              <LI>No noise. 
              <LI>Very fast / no iterations. 
              <LI>Time correlation needed in observed signals. 
              <LI>Time delay tau estimated. </LI></UL></TD></TR>
        <TR>
          <TD width=363>
            <P>[<A 
            href="http://mole.imm.dtu.dk/toolbox/ica/ms/bibtex.bib.txt">Citations</A>][<SPAN 
            class=algorithm>Code <A 
            href="http://mole.imm.dtu.dk/toolbox/ica/MS/icaMS.tar.gz">GZ</A> <A 
            href="http://mole.imm.dtu.dk/toolbox/ica/ms/icaMS.zip">ZIP</A></SPAN>]</P></TD>
          <TD width=246>
            <P align=right>[Version 1.3 ]</P></TD></TR></TBODY></TABLE>
      <P>&nbsp;</P>
      <P><IMG border=1 height=3 src="ICADTU Toolbox.files/bevel2.jpg" 
      width=640></P>
      <H1>Demonstrations</H1>
      <TABLE bgColor=#ffffff border=0 cellPadding=5 cellSpacing=0 
      class=algorithm width=640>
        <TBODY>
        <TR>
          <TD rowSpan=3 width=1><IMG align=top height=168 
            src="ICADTU Toolbox.files/ICAfMRIDemo.png" width=200></TD>
          <TD colSpan=2 vAlign=top>
            <H2><A name=ICAdemofMRI></A>fMRI</H2></TD></TR>
        <TR>
          <TD align=left colSpan=2 vAlign=top>
            <P>ICA can be used in brain activation studies to reduce the number 
            of dimension and filter out independent and interesting activations. 
            This demonstration shows two studies. One provided by Hvidovre 
            Universitets Hospital, Denmark, that consists of fMRI scannings of 
            humans. Another provided by the EU sponsored <A 
            href="http://www-sop.inria.fr/epidaure/Collaborations/MAPAWAMO/mapawamo.html" 
            target=_blank>MAPAWAMO</A> project from fMRI scannings of monkeys. 
            In the demo comparison between icaMS, icaML, icaMF, icaMF (positive 
            sources) and PCA can be made. More detailes can found in 
        [2].</P></TD></TR>
        <TR>
          <TD vAlign=bottom width=367>
            <P>[<A 
            href="http://mole.imm.dtu.dk/toolbox/ica/demos/bibtex.bib.txt">Citations</A>][<SPAN 
            class=algorithm>Demo 2.7MB <A 
            href="http://mole.imm.dtu.dk/toolbox/ica/demos/ICA_demo_fMRI.tar.gz">GZ</A> 
            <A 
            href="http://mole.imm.dtu.dk/toolbox/ica/demos/ICA_demo_fMRI.zip">ZIP</A></SPAN>]</P></TD>
          <TD width=242>
            <P align=right>&nbsp;</P></TD></TR></TBODY></TABLE>
      <P>&nbsp;</P>
      <TABLE bgColor=#ffffff border=0 cellPadding=5 cellSpacing=0 
      class=algorithm width=640>
        <TBODY>
        <TR>
          <TD rowSpan=3 width=1><IMG align=top height=168 
            src="ICADTU Toolbox.files/ICATextDemo.png" width=200></TD>
          <TD colSpan=2 vAlign=top>
            <H2><A name=ICAdemoText></A>Text classification</H2></TD></TR>
        <TR>
          <TD align=left colSpan=2 vAlign=top>
            <P>ICA is used to classify text in extension to the latent semantic 
            indexing framework. ICA show to align the context grouping structure 
            well in a human sense [1], thus can be used for unsupervised 
            classification. The demonstration shows this on medical abstracts 
            (<A href="http://mole.imm.dtu.dk/faq/MEDdata/index.html">MED 
            dataset</A>), that uses BIC to estimate the number of classes and 
            produces keywords for each class. The icaML algorithm is 
        used.</P></TD></TR>
        <TR>
          <TD vAlign=bottom width=367>
            <P>[<A 
            href="http://mole.imm.dtu.dk/toolbox/ica/demos/bibtex.bib.txt">Citations</A>][<SPAN 
            class=algorithm>Demo 2.4MB <A 
            href="http://mole.imm.dtu.dk/toolbox/ica/demos/ICA_demo_text.tar.gz">GZ</A> 
            <A 
            href="http://mole.imm.dtu.dk/toolbox/ica/demos/ICA_demo_text.zip">ZIP</A></SPAN>]</P></TD>
          <TD width=242>
            <P align=right>&nbsp;</P></TD></TR></TBODY></TABLE>
      <P align=center>[<A href="http://mole.imm.dtu.dk/toolbox/menu.html"> Back 
      to the toolbox menu </A>]</P>
      <P>&nbsp;</P></TD></TR>
  <TR>
    <TD><IMG border=1 height=31 src="ICADTU Toolbox.files/ifooter.jpg" 
      width=640></TD></TR></TBODY></TABLE></DIV></BODY></HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -