📄 bsvm.cpp
字号:
sub_prob.n = prob->n; sub_prob.x = Malloc(svm_node *,sub_prob.l); sub_prob.y = Malloc(double,sub_prob.l); int k; for(k=0;k<ci;k++) { sub_prob.x[k] = x[si+k]; sub_prob.y[k] = +1; } for(k=0;k<cj;k++) { sub_prob.x[ci+k] = x[sj+k]; sub_prob.y[ci+k] = -1; } f[p] = svm_train_one(&sub_prob,param,weighted_C[i],weighted_C[j]); for(k=0;k<ci;k++) if(!nonzero[si+k] && fabs(f[p].alpha[k]) > 0) nonzero[si+k] = true; for(k=0;k<cj;k++) if(!nonzero[sj+k] && fabs(f[p].alpha[ci+k]) > 0) nonzero[sj+k] = true; free(sub_prob.x); free(sub_prob.y); ++p; } // build output model->nr_class = nr_class; model->label = Malloc(int,nr_class); for(i=0;i<nr_class;i++) model->label[i] = label[i]; int total_sv = 0; int *nz_count = Malloc(int,nr_class); model->nSV = Malloc(int,nr_class); for(i=0;i<nr_class;i++) { int nSV = 0; for(int j=0;j<count[i];j++) if(nonzero[start[i]+j]) { ++nSV; ++total_sv; } model->nSV[i] = nSV; nz_count[i] = nSV; } info("Total nSV = %d\n",total_sv); model->l = total_sv; model->SV = Malloc(svm_node *,total_sv); p = 0; for(i=0;i<l;i++) if(nonzero[i]) model->SV[p++] = x[i]; int *nz_start = Malloc(int,nr_class); nz_start[0] = 0; for(i=1;i<nr_class;i++) nz_start[i] = nz_start[i-1]+nz_count[i-1]; model->sv_coef = Malloc(double *,nr_class-1); for(i=0;i<nr_class-1;i++) model->sv_coef[i] = Malloc(double,total_sv); p = 0; for(i=0;i<nr_class;i++) for(int j=i+1;j<nr_class;j++) { // classifier (i,j): coefficients with // i are in sv_coef[j-1][nz_start[i]...], // j are in sv_coef[i][nz_start[j]...] int si = start[i]; int sj = start[j]; int ci = count[i]; int cj = count[j]; int q = nz_start[i]; int k; for(k=0;k<ci;k++) if(nonzero[si+k]) model->sv_coef[j-1][q++] = f[p].alpha[k]; q = nz_start[j]; for(k=0;k<cj;k++) if(nonzero[sj+k]) model->sv_coef[i][q++] = f[p].alpha[ci+k]; ++p; } for(i=0;i<nr_class*(nr_class-1)/2;i++) free(f[i].alpha); free(f); free(nz_count); free(nz_start); } else { svm_problem sub_prob; sub_prob.l = l; sub_prob.x = x; sub_prob.y = new double[l]; for (i=0;i<nr_class;i++) for (int j=start[i];j<start[i]+count[i];j++) sub_prob.y[j] = i; decision_function f; if (param->svm_type == SPOC) { f = solve_spoc(&sub_prob,param,nr_class,weighted_C); delete[] sub_prob.y; for (i=0;i<l;i++) for (int j=0;j<nr_class;j++) if (fabs(f.alpha[i*nr_class+j]) > 0) { nonzero[i] = true; break; } model->nr_class = nr_class; model->label = Malloc(int,nr_class); for(i=0;i<nr_class;i++) model->label[i] = label[i]; int total_sv = 0; model->nSV = Malloc(int,nr_class); for(i=0;i<nr_class;i++) { int nSV = 0; for(int j=0;j<count[i];j++) if(nonzero[start[i]+j]) { ++nSV; ++total_sv; } model->nSV[i] = nSV; } info("Total nSV = %d\n",total_sv); model->l = total_sv; model->SV = Malloc(svm_node *,total_sv); int p = 0; for(i=0;i<l;i++) if(nonzero[i]) model->SV[p++] = x[i]; model->sv_coef = Malloc(double *,nr_class); for(i=0;i<nr_class;i++) model->sv_coef[i] = Malloc(double,total_sv); p = 0; for (i=0;i<l;i++) if (nonzero[i]) { for (int j=0;j<nr_class;j++) model->sv_coef[j][p] = f.alpha[i*nr_class+j]; p++; } free(f.alpha); } else if (param->svm_type == KBB) { f = solve_msvm(&sub_prob,param,nr_class,weighted_C,count); delete[] sub_prob.y; int *start2 = Malloc(int, nr_class), k; start2[0] = 0; for (i=1;i<nr_class;i++) start2[i] = start2[i-1] + l - count[i-1]; for (i=0;i<nr_class;i++) for (int j=start[i];j<start[i]+count[i];j++) { for (k=0;k<i;k++) if (f.alpha[start2[k]+j-count[k]] > 0) { nonzero[j] = true; k = nr_class; } for (k++;k<nr_class;k++) if (f.alpha[start2[k]+j] > 0) { nonzero[j] = true; break; } } model->nr_class = nr_class; model->label = Malloc(int,nr_class); for(i=0;i<nr_class;i++) model->label[i] = label[i]; int total_sv = 0; model->nSV = Malloc(int,nr_class); for(i=0;i<nr_class;i++) { int nSV = 0; for(int j=0;j<count[i];j++) if(nonzero[start[i]+j]) { ++nSV; ++total_sv; } model->nSV[i] = nSV; } info("Total nSV = %d\n",total_sv); model->l = total_sv; model->SV = Malloc(svm_node *,total_sv); int p = 0; for(i=0;i<l;i++) if(nonzero[i]) model->SV[p++] = x[i]; model->sv_coef = Malloc(double *,nr_class-1); for(i=0;i<nr_class-1;i++) model->sv_coef[i] = Malloc(double,total_sv); p = 0; for (i=0;i<nr_class;i++) for (int j=start[i];j<start[i]+count[i];j++) if (nonzero[j]) { for (k=0;k<i;k++) model->sv_coef[k][p] = f.alpha[start2[k]+j-count[k]]; for (k++;k<nr_class;k++) model->sv_coef[k-1][p] = f.alpha[start2[k]+j]; p++; } free(start2); free(f.alpha); } } free(label); free(count); free(index); free(start); free(weighted_C); free(x); free(nonzero); } return model;}double svm_predict(const svm_model *model, const svm_node *x){ if (model->param.svm_type == EPSILON_SVR) { double *sv_coef = model->sv_coef[0]; double sum = 0; for(int i=0;i<model->l;i++) sum += sv_coef[i] * (Kernel::k_function(x,model->SV[i],model->param) + 1); return sum; } else if (model->param.svm_type == C_SVC) { int i; int nr_class = model->nr_class; int l = model->l; double *kvalue = Malloc(double,l); for(i=0;i<l;i++) kvalue[i] = Kernel::k_function(x,model->SV[i],model->param) + 1; int *start = Malloc(int,nr_class); start[0] = 0; for(i=1;i<nr_class;i++) start[i] = start[i-1]+model->nSV[i-1]; int *vote = Malloc(int,nr_class); for(i=0;i<nr_class;i++) vote[i] = 0; for(i=0;i<nr_class;i++) for(int j=i+1;j<nr_class;j++) { double sum = 0; int si = start[i]; int sj = start[j]; int ci = model->nSV[i]; int cj = model->nSV[j]; int k; double *coef1 = model->sv_coef[j-1]; double *coef2 = model->sv_coef[i]; for(k=0;k<ci;k++) sum += coef1[si+k] * kvalue[si+k]; for(k=0;k<cj;k++) sum += coef2[sj+k] * kvalue[sj+k]; if(sum > 0) ++vote[i]; else ++vote[j]; } int vote_max_idx = 0; for(i=1;i<nr_class;i++) if(vote[i] > vote[vote_max_idx]) vote_max_idx = i; free(kvalue); free(start); free(vote); return model->label[vote_max_idx]; } else if (model->param.svm_type == SPOC) { int i, j, l = model->l, nr_class = model->nr_class; double *f = Malloc(double, nr_class); for (i=0;i<nr_class;i++) f[i] = 0; for (i=0;i<l;i++) { double kv = Kernel::k_function(x, model->SV[i], model->param); for (j=0;j<nr_class;j++) f[j] += model->sv_coef[j][i]*kv; } j = 0; for (i=1;i<nr_class;i++) if (f[i] > f[j]) j = i; free(f); return model->label[j]; } else { int i, j, k; int nr_class = model->nr_class, m = nr_class - 1; int l = model->l; double *f = Malloc(double, nr_class); for (i=0;i<nr_class;i++) f[i] = 0; double *A = Malloc(double, l); for (i=0;i<l;i++) { A[i] = 0; for (j=0;j<m;j++) A[i] += model->sv_coef[j][i]; } int *start = Malloc(int,nr_class); start[0] = 0; for(i=1;i<nr_class;i++) start[i] = start[i-1]+model->nSV[i-1]; for (i=0;i<nr_class;i++) { int t = start[i] + model->nSV[i]; for (j=start[i];j<t;j++) { double kv = Kernel::k_function(x,model->SV[j], model->param) + 1; for (k=0;k<i;k++) f[k] -= model->sv_coef[k][j]*kv; f[i] += A[j]*kv; for (;k<m;k++) f[k+1] -= model->sv_coef[k][j]*kv; } } j = 0; for (i=1;i<nr_class;i++) if (f[i] > f[j]) j = i; free(A); free(f); return model->label[j]; }}const char *svm_type_table[] ={ "c_svc","kbb","spoc","epsilon_svr",NULL};const char *kernel_type_table[]={ "linear","polynomial","rbf","sigmoid",NULL};int svm_save_model(const char *model_file_name, const svm_model *model){ FILE *fp = fopen(model_file_name,"w"); if(fp==NULL) return -1; const svm_parameter& param = model->param; fprintf(fp,"svm_type %s\n", svm_type_table[param.svm_type]); fprintf(fp,"kernel_type %s\n", kernel_type_table[param.kernel_type]); if(param.kernel_type == POLY) fprintf(fp,"degree %g\n", param.degree); if(param.kernel_type == POLY || param.kernel_type == RBF || param.kernel_type == SIGMOID) fprintf(fp,"gamma %g\n", param.gamma); if(param.kernel_type == POLY || param.kernel_type == SIGMOID) fprintf(fp,"coef0 %g\n", param.coef0); int nr_class = model->nr_class; int l = model->l; fprintf(fp, "nr_class %d\n", nr_class); fprintf(fp, "total_sv %d\n",l); if(model->label) { fprintf(fp, "label"); for(int i=0;i<nr_class;i++) fprintf(fp," %d",model->label[i]); fprintf(fp, "\n"); } if(model->nSV) { fprintf(fp, "nr_sv"); for(int i=0;i<nr_class;i++) fprintf(fp," %d",model->nSV[i]); fprintf(fp, "\n"); } fprintf(fp, "SV\n"); const double * const *sv_coef = model->sv_coef; const svm_node * const *SV = model->SV; for(int i=0;i<l;i++) { if (model->param.svm_type == SPOC) for(int j=0;j<nr_class;j++) fprintf(fp, "%.16g ",sv_coef[j][i]); else for(int j=0;j<nr_class-1;j++) fprintf(fp, "%.16g ",sv_coef[j][i]); const svm_node *p = SV[i]; while(p->index != -1) { fprintf(fp,"%d:%.8g ",p->index,p->value); p++; } fprintf(fp, "\n"); } fclose(fp); return 0;}svm_model *svm_load_model(const char *model_file_name){ FILE *fp = fopen(model_file_name,"rb"); if(fp==NULL) return NULL; // read parameters svm_model *model = Malloc(svm_model,1); svm_parameter& param = model->param; model->label = NULL; model->nSV = NULL; char cmd[81]; while(1) { fscanf(fp,"%80s",cmd); if(strcmp(cmd,"svm_type")==0) { fscanf(fp,"%80s",cmd); int i; for(i=0;svm_type_table[i];i++) { if(strcmp(svm_type_table[i],cmd)==0) { param.svm_type=i; break; } } if(svm_type_table[i] == NULL) { fprintf(stderr,"unknown svm type.\n"); free(model->label); free(model->nSV); free(model); return NULL; } } else if(strcmp(cmd,"kernel_type")==0) { fscanf(fp,"%80s",cmd); int i; for(i=0;kernel_type_table[i];i++) { if(strcmp(kernel_type_table[i],cmd)==0) { param.kernel_type=i; break; } } if(kernel_type_table[i] == NULL) { fprintf(stderr,"unknown kernel function.\n"); free(model->label); free(model->nSV); free(model); return NULL; } } else if(strcmp(cmd,"degree")==0) fscanf(fp,"%lf",¶m.degree); else if(strcmp(cmd,"gamma")==0) fscanf(fp,"%lf",¶m.gamma); else if(strcmp(cmd,"coef0")==0) fscanf(fp,"%lf",¶m.coef0); else if(strcmp(cmd,"nr_class")==0) fscanf(fp,"%d",&model->nr_class); else if(strcmp(cmd,"total_sv")==0) fscanf(fp,"%d",&model->l); else if(strcmp(cmd,"label")==0) { int n = model->nr_class; model->label = Malloc(int,n); for(int i=0;i<n;i++) fscanf(fp,"%d",&model->label[i]); } else if(strcmp(cmd,"nr_sv")==0) { int n = model->nr_class; model->nSV = Malloc(int,n); for(int i=0;i<n;i++) fscanf(fp,"%d",&model->nSV[i]); } else if(strcmp(cmd,"SV")==0) { while(1) { int c = getc(fp); if(c==EOF || c=='\n') break; } break; } else { fprintf(stderr,"unknown text in model file\n"); free(model->label); free(model->nSV); free(model); return NULL; } } // read sv_coef and SV int elements = 0; long pos = ftell(fp); while(1) { int c = fgetc(fp); switch(c) { case '\n': // count the '-1' element case ':': ++elements; break; case EOF: goto out; default: ; } }out: fseek(fp,pos,SEEK_SET); int m = (param.svm_type == SPOC) ? model->nr_class : model->nr_class - 1; int l = model->l; model->sv_coef = Malloc(double *,m); int i; for(i=0;i<m;i++) model->sv_coef[i] = Malloc(double,l); model->SV = Malloc(svm_node*,l); svm_node *x_space = Malloc(svm_node,elements); int j=0; for(i=0;i<l;i++) { model->SV[i] = &x_space[j]; for(int k=0;k<m;k++) fscanf(fp,"%lf",&model->sv_coef[k][i]); while(1) { int c; do { c = getc(fp); if(c=='\n') goto out2; } while(isspace(c)); ungetc(c,fp); fscanf(fp,"%d:%lf",&(x_space[j].index),&(x_space[j].value)); ++j; } out2: x_space[j++].index = -1; } fclose(fp); model->free_sv = 1; // XXX return model;}void svm_destroy_model(svm_model* model){ if(model->free_sv) free((void *)(model->SV[0])); int m = (model->param.svm_type == SPOC) ? model->nr_class : model->nr_class - 1; for(int i=0;i<m;i++) free(model->sv_coef[i]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -