⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bsvm.cpp

📁 一个support vector machine的matlab工具箱。
💻 CPP
📖 第 1 页 / 共 5 页
字号:
		swap_index(start1[i], start1[i-1]);	t = nr_class*nr_class;	for (i=s+1;i<=t;i++)		start1[i]++;	for (i=0;i<=s;i++)		start2[i]++;}//// Q matrices for various formulations//class BSVC_Q: public Kernel{ public:	BSVC_Q(const svm_problem& prob, const svm_parameter& param, const schar *y_)	:Kernel(prob.l, prob.x, param)	{		clone(y,y_,prob.l);		cache = new Cache(prob.l,(int)(param.cache_size*(1<<20)));	}		Qfloat *get_Q(int i, int len) const	{		Qfloat *data;		int start;		if((start = cache->get_data(i,&data,len)) < len)		{			for(int j=start;j<len;j++)				data[j] = (Qfloat)y[i]*y[j]*((this->*kernel_function)(i,j) + 1);		}		return data;	}	void swap_index(int i, int j) const	{		cache->swap_index(i,j);		Kernel::swap_index(i,j);		swap(y[i],y[j]);	}	~BSVC_Q()	{		delete[] y;		delete cache;	}private:	schar *y;	Cache *cache;};class ONE_CLASS_Q: public Kernel{public:	ONE_CLASS_Q(const svm_problem& prob, const svm_parameter& param)	:Kernel(prob.l, prob.x, param)	{		cache = new Cache(prob.l,(int)(param.cache_size*(1<<20)));	}		Qfloat *get_Q(int i, int len) const	{		Qfloat *data;		int start;		if((start = cache->get_data(i,&data,len)) < len)		{			for(int j=start;j<len;j++)				data[j] = (Qfloat)(this->*kernel_function)(i,j);		}		return data;	}	void swap_index(int i, int j) const	{		cache->swap_index(i,j);		Kernel::swap_index(i,j);	}	~ONE_CLASS_Q()	{		delete cache;	}private:	Cache *cache;};class BONE_CLASS_Q: public Kernel{public:	BONE_CLASS_Q(const svm_problem& prob, const svm_parameter& param)	:Kernel(prob.l, prob.x, param)	{		cache = new Cache(prob.l,(int)(param.cache_size*(1<<20)));	}		Qfloat *get_Q(int i, int len) const	{		Qfloat *data;		int start;		if((start = cache->get_data(i,&data,len)) < len)		{			for(int j=start;j<len;j++)				data[j] = (Qfloat)(this->*kernel_function)(i,j) + 1;		}		return data;	}	~BONE_CLASS_Q()	{		delete cache;	}private:	Cache *cache;};class BSVR_Q: public Kernel{ public:	BSVR_Q(const svm_problem& prob, const svm_parameter& param)	:Kernel(prob.l, prob.x, param)	{		l = prob.l;		cache = new Cache(l,(int)(param.cache_size*(1<<20)));		sign = new schar[2*l];		index = new int[2*l];		for(int k=0;k<l;k++)		{			sign[k] = 1;			sign[k+l] = -1;			index[k] = k;			index[k+l] = k;		}		q = param.qpsize;		buffer = new Qfloat*[q];		for (int i=0;i<q;i++)			buffer[i] = new Qfloat[2*l];			next_buffer = 0;	}	void swap_index(int i, int j) const	{		swap(sign[i],sign[j]);		swap(index[i],index[j]);	}		Qfloat *get_Q(int i, int len) const	{		Qfloat *data;		int real_i = index[i];		if(cache->get_data(real_i,&data,l) < l)		{			for(int j=0;j<l;j++)				data[j] = (Qfloat)(this->*kernel_function)(real_i,j) + 1;		}		// reorder and copy		Qfloat *buf = buffer[next_buffer];		next_buffer = (next_buffer+1)%q;		schar si = sign[i];		for(int j=0;j<len;j++)			buf[j] = si * sign[j] * data[index[j]];		return buf;	}	~BSVR_Q()	{		delete cache;		delete[] sign;		delete[] index;		for (int i=0;i<q;i++)			delete[] buffer[i];		delete[] buffer;	}private:	int l, q;	Cache *cache;	schar *sign;	int *index;	mutable int next_buffer;	Qfloat** buffer;};//// construct and solve various formulations//static void solve_c_svc(	const svm_problem *prob, const svm_parameter* param,	double *alpha, Solver_B::SolutionInfo* si, double Cp, double Cn){	int l = prob->l;	double *minus_ones = new double[l];	schar *y = new schar[l];	int i;	for(i=0;i<l;i++)	{		alpha[i] = 0;		minus_ones[i] = -1;		if(prob->y[i] > 0) y[i] = +1; else y[i]=-1;	}		if (param->kernel_type == LINEAR)	{		double *w = new double[prob->n+1];		for (i=0;i<=prob->n;i++)			w[i] = 0;		Solver_B_linear s;		int totaliter = 0;		double Cpj = param->Cbegin, Cnj = param->Cbegin*Cn/Cp;		while (Cpj < Cp)		{			totaliter += s.Solve(l, prob->x, minus_ones, y, alpha, w, 			Cpj, Cnj, param->eps, si, param->shrinking, param->qpsize);			if (Cpj*param->Cstep >= Cp)			{				for (i=0;i<=prob->n;i++)					w[i] = 0;				for (i=0;i<l;i++)				{					if (y[i] == 1 && alpha[i] >= Cpj)						alpha[i] = Cp;					else 						if (y[i] == -1 && alpha[i] >= Cnj)							alpha[i] = Cn;						else							alpha[i] *= Cp/Cpj;					double yalpha = y[i]*alpha[i];					for (const svm_node *px = prob->x[i];px->index != -1;px++)						w[px->index] += yalpha*px->value;					w[0] += yalpha;				}			}			else			{				for (i=0;i<l;i++)					alpha[i] *= param->Cstep;				for (i=0;i<=prob->n;i++)					w[i] *= param->Cstep;			}			Cpj *= param->Cstep;			Cnj *= param->Cstep;		}		totaliter += s.Solve(l, prob->x, minus_ones, y, alpha, w, Cp, Cn,		param->eps, si, param->shrinking, param->qpsize);		info("\noptimization finished, #iter = %d\n",totaliter);	}	else	{		Solver_B s;		s.Solve(l, BSVC_Q(*prob,*param,y), minus_ones, y, alpha, Cp, Cn, 		param->eps, si, param->shrinking, param->qpsize);	}	double sum_alpha=0;	for(i=0;i<l;i++)		sum_alpha += alpha[i];	info("nu = %f\n", sum_alpha/(param->C*prob->l));	for(i=0;i<l;i++)		alpha[i] *= y[i];	delete[] minus_ones;	delete[] y;}static void solve_epsilon_svr(	const svm_problem *prob, const svm_parameter *param,	double *alpha, Solver_B::SolutionInfo* si){	int l = prob->l;	double *alpha2 = new double[2*l];	double *linear_term = new double[2*l];	schar *y = new schar[2*l];	int i;	for(i=0;i<l;i++)	{		alpha2[i] = 0;		linear_term[i] = param->p - prob->y[i];		y[i] = 1;		alpha2[i+l] = 0;		linear_term[i+l] = param->p + prob->y[i];		y[i+l] = -1;	}	if (param->kernel_type == LINEAR)	{		double *w = new double[prob->n+1];		for (i=0;i<=prob->n;i++)			w[i] = 0;		struct svm_node **x = new svm_node*[2*l];		for (i=0;i<l;i++)			x[i] = x[i+l] = prob->x[i];		Solver_B_linear s;		int totaliter = 0;		double Cj = param->Cbegin;		while (Cj < param->C)		{			totaliter += s.Solve(2*l, x, linear_term, y, alpha2, w, 			Cj, Cj, param->eps, si, param->shrinking, param->qpsize);			if (Cj*param->Cstep >= param->C)			{				for (i=0;i<=prob->n;i++)					w[i] = 0;				for (i=0;i<2*l;i++)				{					if (alpha2[i] >= Cj)						alpha2[i] = param->C;					else 						alpha2[i] *= param->C/Cj;					double yalpha = y[i]*alpha2[i];					for (const svm_node *px = x[i];px->index != -1;px++)						w[px->index] += yalpha*px->value;					w[0] += yalpha;				}			}			else			{				for (i=0;i<2*l;i++)					alpha2[i] *= param->Cstep;				for (i=0;i<=prob->n;i++)					w[i] *= param->Cstep;			}			Cj *= param->Cstep;		}		totaliter += s.Solve(2*l, x, linear_term, y, alpha2, w, param->C,			param->C, param->eps, si, param->shrinking, param->qpsize);		info("\noptimization finished, #iter = %d\n",totaliter);	}	else	{		Solver_B s;		s.Solve(2*l, BSVR_Q(*prob,*param), linear_term, y, alpha2, param->C,			param->C, param->eps, si, param->shrinking, param->qpsize);	}	double sum_alpha = 0;	for(i=0;i<l;i++)	{		alpha[i] = alpha2[i] - alpha2[i+l];		sum_alpha += fabs(alpha[i]);	}	info("nu = %f\n",sum_alpha/(param->C*l));	delete[] y;	delete[] alpha2;	delete[] linear_term;}//// decision_function//struct decision_function{	double *alpha;};decision_function solve_spoc(const svm_problem *prob, 	const svm_parameter *param, int nr_class, double *weighted_C){	int i, m, l = prob->l;	double *alpha = new double[l*nr_class];	short *y = new short[l];		for (i=0;i<l;i++)	{		for (m=0;m<nr_class;m++)			alpha[i*nr_class+m] = 0;		y[i] = (short) prob->y[i];		}		Solver_SPOC s;	s.Solve(l, ONE_CLASS_Q(*prob, *param), alpha, y, weighted_C,	param->eps, param->shrinking, nr_class);		delete[] y;	decision_function f;	f.alpha = alpha;	return f;  	}decision_function solve_msvm(const svm_problem *prob, 	const svm_parameter *param, int nr_class, double *weighted_C, int *count){	Solver_B::SolutionInfo si;	int i, l = prob->l*(nr_class - 1);	double *alpha = Malloc(double, l);	short *y = new short[l];		for (i=0;i<l;i++)		alpha[i] = 0;		int p = 0;	for (i=0;i<nr_class;i++)	{		int q = 0;		for (int j=0;j<nr_class;j++)			if (i != j)				for (int k=0;k<count[j];k++,q++)					y[p++] = (short) prob->y[q];			else				q += count[j];	}	Solver_MB s;	s.Solve(l, BONE_CLASS_Q(*prob,*param), -2, alpha, y, weighted_C,	2*param->eps, &si, param->shrinking, param->qpsize, nr_class, count);	info("obj = %f, rho = %f\n",si.obj,0.0);        // output SVs	int nSV = 0, nBSV = 0;	p = 0;	for (i=0;i<nr_class;i++)	{		int q = 0;		for (int j=0;j<nr_class;j++)			if (i != j)				for (int k=0;k<count[j];k++,q++)				{					if (fabs(alpha[p]) > 0)					{						++nSV;						if (fabs(alpha[p]) >= si.upper_bound[(int) prob->y[q]])							++nBSV;					}					p++;				}			else				q += count[j];	}	info("nSV = %d, nBSV = %d\n",nSV,nBSV);	delete[] y;	delete[] si.upper_bound;	decision_function f;	f.alpha = alpha;	return f;} decision_function svm_train_one(const svm_problem *prob, 	const svm_parameter *param, double Cp, double Cn){	double *alpha = Malloc(double,prob->l);	Solver_B::SolutionInfo si;	switch(param->svm_type)	{		case C_SVC:			solve_c_svc(prob,param,alpha,&si,Cp,Cn);			break;		case EPSILON_SVR:			solve_epsilon_svr(prob,param,alpha,&si);			break;	}	info("obj = %f, rho = %f\n",si.obj,0.0);	// output SVs	int nSV = 0;	int nBSV = 0;	for(int i=0;i<prob->l;i++)	{		if(fabs(alpha[i]) > 0)		{			++nSV;			if(prob->y[i] > 0)			{				if (fabs(alpha[i]) >= si.upper_bound[0])					++nBSV;			}			else			{				if (fabs(alpha[i]) >= si.upper_bound[1])					++nBSV;			}		}	}	info("nSV = %d, nBSV = %d\n",nSV,nBSV);	delete[] si.upper_bound;	decision_function f;	f.alpha = alpha;	return f;}//// svm_model//struct svm_model{	svm_parameter param;	// parameter	int nr_class;		// number of classes, = 2 in regression	int l;			// total #SV	svm_node **SV;		// SVs (SV[l])	double **sv_coef;	// coefficients for SVs in decision functions (sv_coef[n-1][l])	// for classification only	int *label;		// label of each class (label[n])	int *nSV;		// number of SVs for each class (nSV[n])				// nSV[0] + nSV[1] + ... + nSV[n-1] = l	// XXX	int free_sv;		// 1 if svm_model is created by svm_load_model				// 0 if svm_model is created by svm_train};//// Interface functions//svm_model *svm_train(const svm_problem *prob, const svm_parameter *param){	svm_model *model = Malloc(svm_model,1);	model->param = *param;	model->free_sv = 0;	// XXX	if (param->svm_type == EPSILON_SVR)	{		// regression		model->nr_class = 2;		model->label = NULL;		model->nSV = NULL;		model->sv_coef = Malloc(double *,1);		decision_function f = svm_train_one(prob,param,0,0);		int nSV = 0;		int i;		for(i=0;i<prob->l;i++)			if(fabs(f.alpha[i]) > 0) ++nSV;		model->l = nSV;		model->SV = Malloc(svm_node *,nSV);		model->sv_coef[0] = Malloc(double,nSV);		int j = 0;		for(i=0;i<prob->l;i++)			if(fabs(f.alpha[i]) > 0)			{				model->SV[j] = prob->x[i];				model->sv_coef[0][j] = f.alpha[i];				++j;			}				free(f.alpha);	}	else	{		// classification		// find out the number of classes		int l = prob->l;		int max_nr_class = 16;		int nr_class = 0;		int *label = Malloc(int,max_nr_class);		int *count = Malloc(int,max_nr_class);		int *index = Malloc(int,l);		int i;		for(i=0;i<l;i++)		{			int this_label = (int)prob->y[i];			int j;			for(j=0;j<nr_class;j++)				if(this_label == label[j])				{					++count[j];					break;				}			index[i] = j;			if(j == nr_class)			{				if(nr_class == max_nr_class)				{					max_nr_class *= 2;					label = (int *)realloc(label,max_nr_class*sizeof(int));					count = (int *)realloc(count,max_nr_class*sizeof(int));				}				label[nr_class] = this_label;				count[nr_class] = 1;				++nr_class;			}		}		// group training data of the same class		int *start = Malloc(int,nr_class);		start[0] = 0;		for(i=1;i<nr_class;i++)			start[i] = start[i-1]+count[i-1];		svm_node **x = Malloc(svm_node *,l);				for(i=0;i<l;i++)		{			x[start[index[i]]] = prob->x[i];			++start[index[i]];		}				start[0] = 0;		for(i=1;i<nr_class;i++)			start[i] = start[i-1]+count[i-1];		// calculate weighted C		double *weighted_C = Malloc(double, nr_class);		for(i=0;i<nr_class;i++)			weighted_C[i] = param->C;		for(i=0;i<param->nr_weight;i++)		{				int j;			for(j=0;j<nr_class;j++)				if(param->weight_label[i] == label[j])					break;			if(j == nr_class)				fprintf(stderr,"warning: class label %d specified in weight is not found\n", param->weight_label[i]);			else				weighted_C[j] *= param->weight[i];		}		bool *nonzero = Malloc(bool,l);		for(i=0;i<l;i++)			nonzero[i] = false;	if (param->svm_type == C_SVC)	{			// train n*(n-1)/2 models				decision_function *f = Malloc(decision_function,nr_class*(nr_class-1)/2);		int p = 0;		for(i=0;i<nr_class;i++)			for(int j=i+1;j<nr_class;j++)			{				svm_problem sub_prob;				int si = start[i], sj = start[j];				int ci = count[i], cj = count[j];				sub_prob.l = ci+cj;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -